MB2

Molecular Biomimetics and Magnets Biomineralization: Towards Swimming Nanorobots

 Coordinatore MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V. 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙485˙000 €
 EC contributo 1˙485˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091028
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-01-01   -   2015-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Dr.
Nome: Damien
Cognome: Faivre
Email: send email
Telefono: +49 331 567 9405
Fax: +49 331 567 9402

DE (MUENCHEN) hostInstitution 1˙485˙000.00
2    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Ms.
Nome: Nadine
Cognome: Stolz
Email: send email
Telefono: +49 331 567 9196
Fax: +49 331 567 9102

DE (MUENCHEN) hostInstitution 1˙485˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

building    biological    materials    magnetotactic    peptides    functional    external    blocks    magnetic    determinants    magnetite    nanoparticles    binding    bacteria    assemble    nanoscale   

 Obiettivo del progetto (Objective)

'Nature not only provides inspiration for designing new materials but also teaches us how to use interparticle and external forces to structure and assemble these building blocks into functional entities. Magnetotactic bacteria and their chain of magnetosome represent a striking example of such an accomplishment where a simple living organism precisely tune the properties of inorganics that in turn guide the cell movement thereby providing an energetic advantage vs. the non-magnetotactic counterparts. In this project, we will develop a bio-inspired research based on magnetotactic bacteria. We will combine the recent developments of nanoscale engineering in the chemical science and the latest advances in molecular biology to create a novel methodology enabling first, the understanding of the control of biological determinants over single inorganic building blocks at the nanoscale and over highly-organized hierarchical structures, and second, the use of these biomacromolecules to construct new functional materials. We will use phage display to genetically select peptides specifically binding to magnetite and look for homology within the available genomes of the different strains of magnetotactic bacteria in order to detect promising biological determinants. We will screen the identified compounds by our in-house developed high-throughput technique based on force microscopy. On the one hand, the effect of the high potential biological determinant on the properties of magnetic nanoparticles will be tested under physiological conditions in biomimetic reactor. On the other hand, we will use the knowledge gained from the binding capacities of the peptides to functionalize magnetite nanoparticles and assemble them in order to eventually form a swimming nanorobots that can be directed by an external magnetic field while transporting beads.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ROFIRM (2013)

Mathematical Methods for Robust Financial Risk Management

Read More  

ONCOMECHANICS (2014)

Commercialization of a nanomechanical flow cytometer for cell pre-screening

Read More  

SIMBA (2010)

Single-Molecule BioAssays at Elevated Concentrations

Read More