Coordinatore | MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Germany [DE] |
Totale costo | 1˙901˙600 € |
EC contributo | 1˙901˙600 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2010-AdG_20100224 |
Funding Scheme | ERC-AG |
Anno di inizio | 2011 |
Periodo (anno-mese-giorno) | 2011-03-01 - 2016-02-29 |
# | ||||
---|---|---|---|---|
1 |
MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
Organization address
address: Hofgartenstrasse 8 contact info |
DE (MUENCHEN) | hostInstitution | 1˙901˙600.00 |
2 |
MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
Organization address
address: Hofgartenstrasse 8 contact info |
DE (MUENCHEN) | hostInstitution | 1˙901˙600.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Hydrogen under ambient pressure and low temperature forms a molecular crystal which under high pressure of ~400 GPa is predicted turn into metal and at further compression up to ~500 GPa hydrogen molecules dissociate and are transformed to a monoatomic crystal. This simplest metal is predicted to be a superconductor with a very high critical temperature Tc ~200 K. Moreover, this superconductor might be recovered to ambient pressure. Metallic hydrogen might acquire a new quantum state, namely the metallic superfluid and the superconducting superfluid. Because the zero-point motions of the hydrogen nuclei (protons) are significant, they might stabilize metallic hydrogen in a zero-temperature liquid ground state similar to liquid helium. For this state, superconductivity for electrons and protons (Fermi-liquids) is expected in hydrogen, and superconductivity for electrons and superfluidity for deutrons in deuterium (an isotope of hydrogen). For astrophysics the study of metallic hydrogen is important because it might be a main constituent in giant planets and stars. We plan to explore three directions to achieve and study metallic hydrogen: (a) Compression of pure hydrogen at room and lower temperatures to record pressures of 440 GPa which we currently achieve (b) Exploration of the higher temperature domain P> 150 GPa, T<1000 K; (c) Study of hydrogen dominant materials at low pressures P>50 GPa and low temperatures. We will give first preference to compression pure hydrogen to metallic state at low temperatures to verify the theoretical prediction in the region of ~ 400 GPa. In case this pressure would not be sufficient our study will be focused on parallel tasks hydrogen dominant materials, and fluid hydrogen.'