BIOMAP

Simultaneous Elemental and Molecular Imaging of Biological Targets – A New Paradigm for the Study of Disease and its Treatment

 Coordinatore LOUGHBOROUGH UNIVERSITY 

 Organization address address: Ashby Road
city: LOUGHBOROUGH
postcode: LE11 3TU

contact info
Titolo: Dr.
Nome: Raymond
Cognome: Kent
Email: send email
Telefono: +44 1509 222456
Fax: +44 1509 223953

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 210˙092 €
 EC contributo 210˙092 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-03-13   -   2014-03-12

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    LOUGHBOROUGH UNIVERSITY

 Organization address address: Ashby Road
city: LOUGHBOROUGH
postcode: LE11 3TU

contact info
Titolo: Dr.
Nome: Raymond
Cognome: Kent
Email: send email
Telefono: +44 1509 222456
Fax: +44 1509 223953

UK (LOUGHBOROUGH) coordinator 210˙092.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

sampling    speed    assisted    coupled    efficiency    metal    ms    molecular    spectrometry    laser    cells    matrix    host    cell    mass    elemental    populations    abundance    icp   

 Obiettivo del progetto (Objective)

'This project proposes the development of a technology capable of delivering, high speed, simultaneous elemental and molecular maps of biological targets. Specifically these targets will include plaques associated with age-related macular degeneration (AMD), tumours treated with Pt-based chemotherapy drugs, and cell populations derived from the FP7 project, the ONE Study. The dual-mode imaging system will enable the analysis of metallo-proteins and their binding sites, or where there is no native metal tag or its abundance is too small to detect, anti-body or specific reactive chemistry metal or nano-particle tags will be added to the target molecules. For the ONE Study, one of the key project aims is to develop cell labelling strategies that will enable therapeutically administered cells to be tracked at low abundance in the host cell populations without toxic impact on either the therapeutic cells or host organism.

The technology will be based on employing a common pulsed laser platform for laser ablation, desorption, or matrix assisted sampling of the target material simultaneously coupled with inductively-coupled plasma elemental mass spectrometry (ICP-MS) and ion trap organic mass spectrometry. In the case of the molecular mass spectrometry, electro-spray or matrix assisted charging will be used. The sampling will employ a technology developed in the host laboratory that enables targets to be sampled at atmospheric pressure whilst excluding atmosphere from the sampling point. The technology will be optimised for high speed and high efficiency to enable rapid mapping of targets at very high sensitivity. This will require development of a new high efficiency torch design for ICP-MS and the novel use of micro-jet pumps to deliver samples to the mass spectrometers.

The project will also take advantage of the Fellow’s expertise in synchrotron X-ray techniques to obtain non-destructive and comparative analyses of the specimen materials.'

Altri progetti dello stesso programma (FP7-PEOPLE)

EUROCIVILSOCIETY (2011)

Between Contestation and Cooptation: the Participation of Civil Society Organisations to the European Union Integration Process

Read More  

PHOCSCLEEN (2012)

PHOtoCathalytic Systems for CLean Energy and Environment Applications

Read More  

SPECTRO-POS (2014)

Spectroscopy of positronium: atom control and gravity measurements

Read More