NANOMEDICINE/IMAGING

Nanoparticle development for molecular imaging and drug delivery

 Coordinatore MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V. 

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Ms.
Nome: Nadine
Cognome: Stolz
Email: send email
Telefono: 493316000000

 Nazionalità Coordinatore Germany [DE]
 Totale costo 225˙945 €
 EC contributo 225˙945 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-09-01   -   2013-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Ms.
Nome: Nadine
Cognome: Stolz
Email: send email
Telefono: 493316000000

DE (MUENCHEN) coordinator 225˙945.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

nanoparticles    surface    glycosylated    proteins    inhibition    ligand    photon    particles    viral    neurons    drug    assembly    signalling    critical    nanoparticle    utility    functionalized    molecular    imaging    photo   

 Obiettivo del progetto (Objective)

'The proposed research will explore new strategies in nanomedicine and develop novel materials for drug delivery, molecular imaging, proteomics and metabolomics. The four main objectives can be summarized as nanoparticle assembly, application of nanoparticles to molecular imaging, novel ligand design for drug delivery and viral detection and inhibition. Assembly of nanoparticles into unique signalling platforms will be achieved via novel ligand design for gold and silver nanoparticles and will enhance the utility of such particles towards molecular imaging. Success will make vibrational microscopy using functionalized nanoparticles a viable alternative to fluorescent probes for medical imaging. Applications in molecular imaging will focus on visualizing proteins at the surface of neurons with glycosylated nanoparticles to understand how these signalling proteins change in number and localization in response to stimuli and how these protein traits vary between healthy and diseased neurons. These data are critical in understanding the causes and progression of neurodegenerative diseases. This research will result in novel opportunities for therapeutic intervention, which itself may be possible using the functionalized nanoparticles as drug delivery agents. Glycosylation of the surface of the nanoparticles is critical for improving the bioavailability of nanoparticles for this objective. In the third objective of this project, photo-cleavable groups will be introduced into the nanoparticle ligand framework and used to release drugs at targets upon two-photon excitation of the nanoparticles. Thereby a single photon is emitted that can cleave the photo-labile group binding the drug to the particle. Finally, glycosylated nanoparticles will be used to image hepatitis C viral particles in vivo and to inhibit their entry into liver cells.'

Introduzione (Teaser)

With sizes on the scale of atoms and molecules, nanoparticles are excellent candidates for applications in molecular imaging, drug delivery and viral inhibition. EU-funded scientists demonstrated their utility in several biomedical areas.

Altri progetti dello stesso programma (FP7-PEOPLE)

VALUES (2012)

Value Analysis of Local Utilities of Enterprises from Social sector

Read More  

SIRENA (2012)

Silesian Researchers NOW!

Read More  

PHAGE MAS SSNMR (2008)

Structural characterization of filamentous bacteriophage viruses by magic-angle spinning solid-state NMR spectroscopy

Read More