SSIDIATE

The significance of stable isotopes as dietary indicators in ancient terrestrial ecosystems

 Coordinatore UNIVERSITY OF BRISTOL 

 Organization address address: TYNDALL AVENUE SENATE HOUSE
city: BRISTOL
postcode: BS8 1TH

contact info
Titolo: Mr.
Nome: Vince
Cognome: Boyle
Email: send email
Telefono: +44 117 3317575
Fax: +44 117 9250900

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 200˙049 €
 EC contributo 200˙049 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-09-01   -   2013-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL

 Organization address address: TYNDALL AVENUE SENATE HOUSE
city: BRISTOL
postcode: BS8 1TH

contact info
Titolo: Mr.
Nome: Vince
Cognome: Boyle
Email: send email
Telefono: +44 117 3317575
Fax: +44 117 9250900

UK (BRISTOL) coordinator 200˙049.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

mostly    inference    organisms    trophic    communities    magnesium    diet    fractionation    ecosystem    time    food    unexplored    calcium    living    apatite    isotopic    tooth    extinct    enamel    ancient   

 Obiettivo del progetto (Objective)

'Paleodietary reconstruction is an important component of palaeoecology, but evidence for diet of ancient organisms is very rare and mostly limited to indirect inference. Besides, our knowledge related to the trophic organization of extinct communities mostly relies on assumptions from morphofunctional studies. Contrary to living communities, quantitative assessment of the trophic relationships within a given extinct ecosystem remains virtually unexplored and represents a key to discuss ecosystem dynamics across major events that affected the biosphere through time. The current proposal will determine the diet of unstudied ancient organisms through chemical isotopic systems. Biological processes such as digestion, cell growth or enzyme production involve important isotopic fractionations of various elements assimilated through food consumption or water uptake. This observed shift between a food source (plants for example) and the consumer's organs is linked to the fractionation of stable isotopes during nutrient uptake into the intestinal cells. Here, the study will focus on the trophic chain hierarchy of large Cretaceous and extant terrestrial vertebrates involving : carbon, a consituent of mineralized tissue used for trophic inference, mostly in mammals; calcium, constituting up to half the apatite (the key mineralised constituent of bones and teeth) and for which preliminary investigations suggest a fractionation; magnesium, one of the most abundant element involved in metabolism and for which fractionation remains unexplored. The analyses will focus on tooth enamel apatite, the most susceptible body part to be preserved in the fossil record and to retain its pristine signal. The following project therefore intends to define appropriate proxies in living organisms that will serve as a basis to explore isotopic variability among the succession of ancient communities through time.'

Introduzione (Teaser)

EU scientists have set up a sophisticated extraction and analysis technique for magnesium and calcium compounds in tooth enamel. The research can be used to uncover the diets of extinct and present day animals.

Altri progetti dello stesso programma (FP7-PEOPLE)

GOLEM (2010)

Realistic Virtual Humans

Read More  

RRD4E2 (2013)

Rational Reactor Design for Enhanced Efficiency in the European Speciality Chemicals Industry

Read More  

TALDICE HOLOCENE (2013)

"Holocene climate variability at Talos Dome, Antarctica"

Read More