Coordinatore | THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 2˙100˙155 € |
EC contributo | 2˙100˙155 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2010-AdG_20100317 |
Funding Scheme | ERC-AG |
Anno di inizio | 2011 |
Periodo (anno-mese-giorno) | 2011-06-01 - 2016-05-31 |
# | ||||
---|---|---|---|---|
1 |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Organization address
address: University Offices, Wellington Square contact info |
UK (OXFORD) | hostInstitution | 2˙100˙155.00 |
2 |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Organization address
address: University Offices, Wellington Square contact info |
UK (OXFORD) | hostInstitution | 2˙100˙155.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Our recent discovery, that large integral membrane protein complexes can survive intact in the mass spectrometer, prompts many new experiments to understand the mechanism of their release from micelles and to maximise the impact of this finding. We propose to examine the structure of membrane complexes after their release from micelles in the gas phase. We will apply ion mobility mass spectrometry to extract collision cross sections of membrane complexes of known structure and compare these with those calculated form atomic coordinates. Conditions will be optimised to minimise the distortion of structure. More controlled release of membrane complexes from micelles will be investigated using photo-activation. To do this we will explore properties of detergents incorporating chromophores, with infra red laser activation to activate the micelle selectively without perturbing the membrane protein complex. We also propose to develop methods for determining structures of lipids bound specifically in membrane protein interfaces and assess their effects on the stability and stoichiometry of the complex. To visualise these complexes in the absence of micelles we propose to 'soft land' membrane protein complexes on electron microscopy grids, targeting components by virtue of their mass to charge. We will apply these methods to some of the most challenging and controversial membrane protein complexes including EmrE, the intact ATP synthases, the M2 proton channel of the influenza A virus, the P-type ATPases and the ATP-sensitive potassium channel. Overall, through this ambitious program of research, we plan to shed new light on membrane protein complexes and the role of lipids and small molecules in stabilising and modifying their properties.'