Coordinatore | LUNDS UNIVERSITET
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Sweden [SE] |
Totale costo | 2˙499˙998 € |
EC contributo | 2˙499˙998 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2010-AdG_20100317 |
Funding Scheme | ERC-AG |
Anno di inizio | 2011 |
Periodo (anno-mese-giorno) | 2011-06-01 - 2016-05-31 |
# | ||||
---|---|---|---|---|
1 |
LUNDS UNIVERSITET
Organization address
address: Paradisgatan 5c contact info |
SE (LUND) | hostInstitution | 2˙499˙998.00 |
2 |
LUNDS UNIVERSITET
Organization address
address: Paradisgatan 5c contact info |
SE (LUND) | hostInstitution | 2˙499˙998.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Protein misfolding is implicated as a pathogenetic mechanism in several neurodegenerative disorders, including Parkinson¿s disease (PD). In prion disease, the misfolded protein spreads between cells and acts as a ¿permissive template¿, causing protein in the recipient cell to misfold. In 2008 we reported that classical neuropathological changes gradually propagate from a PD patient¿s brain to a graft of healthy neurons, over one decade after surgery. These groundbreaking findings suggest that the protein ¿-synuclei may transfer between cells and propagate protein aggregation in a ¿prion-like¿ fashion in PD. This molecular disease mechanism might explain how protein aggregates gradually spread throughout the nervous system and promote progression of disease symptoms. This highly novel concept represents a hitherto poorly explored route of intercellular communication and might have far-reaching implications well beyond PD. Little is known about how various forms of ¿-synuclein are taken up; if they seed aggregation in the recipient cell; how they affect proteostasis in the recipient cells; if they are transported axonally; and, finally, whether they can cause spreading of PD-like pathology in the nervous system. In a multidisciplinary project will now examine the molecular mechanisms underlying translocation of ¿-synuclein across a lipid membrane, from the outside to the inside of a cell; what the molecular and functional consequences are of importing ¿-synuclein; what the dynamics of ¿-synuclein transfer are in vivo; whether aggregates of misfolded ¿-synuclein can spread from one region of the nervous system to another; what genes influence the likelihood for ¿-synuclein transfer to take place; and, finally if small molecules that inhibit ¿-synuclein can be identified. Our studies will shed light on what appears to be a new principle for pathogenesis of neurodegenerative disorders and can open up avenues for new therapeutic strategies.'
Empirical analysis and theoretical modelling of self-organized collective behaviour in three-dimensions: from insect swarms and bird flocks to new schemes of distributed coordination
Read MoreDevelopment of plasmonic quorum sensors for understanding bacterial-eukaryotic cell relations
Read More