Coordinatore | FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V
Organization address
address: Hansastrasse 27C contact info |
Nazionalità Coordinatore | Germany [DE] |
Totale costo | 211˙120 € |
EC contributo | 211˙120 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2010-IOF |
Funding Scheme | MC-IOF |
Anno di inizio | 2011 |
Periodo (anno-mese-giorno) | 2011-05-01 - 2014-04-30 |
# | ||||
---|---|---|---|---|
1 |
FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V
Organization address
address: Hansastrasse 27C contact info |
DE (MUENCHEN) | coordinator | 211˙120.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Summary - Mechanical systems have moving parts which dissipate energy at surfaces sliding with respect to each other. Energy efficient devices need interfaces that are tailored to consume little to no energy. This requires a fundamental understanding of frictional dissipation processes. The evolution of the topography of the two surfaces that are in contact is a crucial component of sliding friction: Processes such as fracture and plastic flow dissipate energy and contribute to the macroscopic coefficient of friction. Using molecular dynamics and continuum methods, the surface structure evolution during plastic deformation is investigated for three isotropic model materials. This hybrid atomistic/continuum approach is aimed to reveal at which length-scale the continuum theory starts to fail in its description of the basic plastic processes and what new phenomena occur below this scale. Besides gaining insights into frictional dissipation processes, this will clarify how to extrapolate atomistic results to the continuum. Since continuum theories are typically used for the design of macroscopic devices, this also constitutes a first step towards the incorporation of surface structure as a design element in the engineering process.'
Mechanical systems like gears and pistons have moving parts that generate friction and energy losses. A hybrid model coupling atomistic and continuum descriptions of sliding interfaces is pointing the way to optimal designs for increased efficiency.