ENOLCAT

Emulating Nature: Reaction Diversity and Understanding through Asymmetric Catalysis

 Coordinatore THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙497˙005 €
 EC contributo 1˙497˙005 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101014
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-10-01   -   2016-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS

 Organization address address: NORTH STREET 66 COLLEGE GATE
city: ST ANDREWS FIFE
postcode: KY16 9AJ

contact info
Titolo: Dr.
Nome: Andrew David
Cognome: Smith
Email: send email
Telefono: +44 1334 463896
Fax: +44 1334 462217

UK (ST ANDREWS FIFE) hostInstitution 1˙497˙005.00
2    THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS

 Organization address address: NORTH STREET 66 COLLEGE GATE
city: ST ANDREWS FIFE
postcode: KY16 9AJ

contact info
Titolo: Ms.
Nome: Trish
Cognome: Starrs
Email: send email
Telefono: +44 1334 467286
Fax: +44 1334 462217

UK (ST ANDREWS FIFE) hostInstitution 1˙497˙005.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

catalysis    chiral    synthetic    materials    synthesis    generate    diverse    specificity    aspire    starting    catalysts    selectively    simple    ability    strategies    nature   

 Obiettivo del progetto (Objective)

'The remarkable way that Nature prepares complex natural products has always been a source of inspiration to scientists, stimulating the development of new synthetic methods and strategies, as elegantly demonstrated by biomimetic approaches to total synthesis. Similarly, the performance and specificity of enzymes, perfected though evolution, offer ideals of selectivity and specificity that synthetic chemists aspire to. This proposal aims to develop an internationally leading research programme inspired by Nature’s ability to selectively generate diverse products from simple materials with exquisite levels of regio- and enantiocontrol. We aspire to synthetically emulate the elegant behaviour of Nature’s building blocks, such as co-enzyme A, in their ability to generate synthetic diversity (such as polyketides and alkaloids) from a simple and common starting material. Using this blueprint, we intend to selectively control the synthesis of a diverse range of bespoke stereodefined carbo- and heterocycles from readily available starting materials using simple man-made catalysts. We specifically aim to develop new strategies within the field of organic catalysis, focused upon the development of methods for the in situ catalytic generation of chiral ammonium enolates from carboxylic acids and their employment in catalysis. We also propose to develop a comprehensive mechanistic understanding of these processes. In preliminary work we have delineated a simple and efficient approach to this problem by employing chiral isothioureas as asymmetric catalysts, and we aim to build on the insight provided by these studies to develop this powerful concept into a generally applicable synthetic strategy.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

NEWIRES (2013)

Next Generation Semiconductor Nanowires

Read More  

MICRONANO (2010)

Modeling Brain Circuitry using Scales Ranging from Micrometer to Nanometer

Read More  

MB2 (2011)

Molecular Biomimetics and Magnets Biomineralization: Towards Swimming Nanorobots

Read More