STUCCOFIELDS

Structure and scaling in computational field theories

 Coordinatore UNIVERSITETET I OSLO 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Norway [NO]
 Totale costo 1˙100˙000 €
 EC contributo 1˙100˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101014
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-01-01   -   2016-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITETET I OSLO

 Organization address address: Problemveien 5-7
city: OSLO
postcode: 313

contact info
Titolo: Mr.
Nome: Yngvar
Cognome: Reichelt
Email: send email
Telefono: +47 22855883
Fax: +47 22855434

NO (OSLO) hostInstitution 1˙100˙000.00
2    UNIVERSITETET I OSLO

 Organization address address: Problemveien 5-7
city: OSLO
postcode: 313

contact info
Titolo: Prof.
Nome: Snorre Harald
Cognome: Christiansen
Email: send email
Telefono: +47 22857774
Fax: +47 22854349

NO (OSLO) hostInstitution 1˙100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

differential    lie    techniques    numerical    finite    physics    discretizations    theory   

 Obiettivo del progetto (Objective)

'The numerical simulations that are used in science and industry require ever more sophisticated mathematics. For the partial differential equations that are used to model physical processes, qualitative properties such as conserved quantities and monotonicity are crucial for well-posedness. Mimicking them in the discretizations seems equally important to get reliable results.

This project will contribute to the interplay of geometry and numerical analysis by bridging the gap between Lie group based techniques and finite elements. The role of Lie algebra valued differential forms will be highlighted. One aim is to develop construction techniques for complexes of finite element spaces incorporating special functions adapted to singular perturbations. Another is to marry finite elements with holonomy based discretizations used in mathematical physics, such as the Lattice Gauge Theory of particle physics and the Regge calculus of general relativity. Stability and convergence of algorithms will be related to differential geometric properties, and the interface between numerical analysis and quantum field theory will be explored. The techniques will be applied to the simulation of mechanics of complex materials and light-matter interactions.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

DEBRIS (2012)

Debris in extrasolar planetary systems

Read More  

MACROCOLL (2014)

The Macroeconomics of Collateral

Read More  

FLATOUT (2012)

From Flat to Chiral: A unified approach to converting achiral aromatic compounds to optically active valuable building blocks

Read More