Coordinatore | NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS
Organization address
address: Christou Lada 6 contact info |
Nazionalità Coordinatore | Greece [EL] |
Totale costo | 3˙737˙409 € |
EC contributo | 2˙690˙000 € |
Programma | FP7-ICT
Specific Programme "Cooperation": Information and communication technologies |
Code Call | FP7-ICT-2011-7 |
Funding Scheme | CP |
Anno di inizio | 2011 |
Periodo (anno-mese-giorno) | 2011-09-01 - 2015-02-28 |
# | ||||
---|---|---|---|---|
1 |
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS
Organization address
address: Christou Lada 6 contact info |
EL (Athens) | coordinator | 0.00 |
2 |
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Organization address
address: RUE LEBLANC 25 contact info |
FR (PARIS 15) | participant | 0.00 |
3 |
III V LAB
Organization address
address: ROUTE DE NOZAY 9 contact info |
FR (MARCOUSSIS) | participant | 0.00 |
4 |
NORSK ELEKTRO OPTIKK AS
Organization address
address: SOLHEIMVEIEN 62 A contact info |
NO (LORENSKOG) | participant | 0.00 |
5 |
TECHNISCHE UNIVERSITAET DARMSTADT
Organization address
address: Karolinenplatz 5 contact info |
DE (DARMSTADT) | participant | 0.00 |
6 |
UNIVERSITY OF SOUTHAMPTON
Organization address
address: Highfield contact info |
UK (SOUTHAMPTON) | participant | 0.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
The mid-infrared spectral region is emerging as the wavelength region of preference for a number of applications including free space communications, absorption spectroscopy, chemical and biological sensing and LIDAR applications. For all the classes of different applications, the key elements of the mid-infrared system are the optical source and the detector.nThe optical source need is adequately served by the youngest diode laser, the well-known quantum cascade laser. Quantum cascade lasers have reached a certain degree of maturity, however they are still inferior to their near-infrared counterparts in terms of intensity noise and high speed modulation performance. The least developed area in MIR photonics though is photodetection characterized by slow responce and low detectivity performance.nThe above fundamental technological limitations, besides high cost and complex manipulation, set a barrier in the process of realising miniaturized, high performance photonic systems for MIR applications.nCLARITY will propose and develop a set of technologies which will radically change the current scenery of mid Infrared photonic systems in terms of performance, size and cost.nUltimate Goals of CLARITY are to:n1.tDesign and implement quantum cascade laser systems with sub-shot noise performance.n2.tDesign and implement wide band, highly efficient mid-infrared to near-infrared converters relying on third order nonlinear effects in silicon waveguides and soft-glass fibres.n3.tDesign and implement mid-infrared photonic integrated circuits based on III-V and IV materials capable of bringing together the novel technological concepts of the project in a single chip.nnUpon its completion, the project will deliver a new class of MIR tools offering at least one order of magnitude higher sensitivity against noise compared to the state of the art solutions and the potential for on chip integration of photonic functions, paving the way for lab on a chip systems at mid-infrared.
Enhanced recycling of post-consumer film waste from light packaging by automatic sorting of trapped improper and degradable polymers
Read More