Opendata, web and dolomites

EyeRegen SIGNED

Engineering a scaffold based therapy for corneal regeneration

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 EyeRegen project word cloud

Explore the words cloud of the EyeRegen project. It provides you a very rough idea of what is the project "EyeRegen" about.

nanometric    architectures    electrospinning    undertaken    cornea    restore    remodelling    techniques    attempt    injury    considerable    tests    biomaterial    treatments    lives    chemical    physical    differ    combination    matrix    epithelial    engineering    3d    suitable    millions    corneal    release    animal    biochemical    burns    fundamentally    tissue    economic    environment    people    culture    ocular    printing    lengthy    live    vitro    determined    mechanisms    disease    examined    mechanical    periods    incorporate    worldwide    endothelial    transplantation    performing    social    grow    mimicking    post    recruit    cells    implantation    optimal    limited    model    cues    regenerate    attracting    inducing    corneas    shortage    nanofiber    attract    manufacturing    patient    material    blindness    scaffold    prior    instead    expense    donor    bio    stromal    transplants    deliberate    incorporated    once    fabricate    artificial    examine    scaffolds    alternative    bioreactor    donated    vision    vivo    regeneration    necessitated    ing   

Project "EyeRegen" data sheet

The following table provides information about the project.

Coordinator
THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN 

Organization address
address: College Green
city: DUBLIN
postcode: 2
website: www.tcd.ie

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ireland [IE]
 Total cost 1˙498˙734 €
 EC max contribution 1˙498˙734 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-STG
 Funding Scheme ERC-STG
 Starting year 2015
 Duration (year-month-day) from 2015-07-01   to  2020-06-30

 Partnership

Take a look of project's partnership.

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Corneal blindness resulting from disease, physical injury or chemical burns affects millions worldwide and has a considerable economic and social impact on the lives of people across Europe. In many cases corneal transplants can restore vision however the shortage of donor corneas suitable for transplantation has necessitated the development of alternative treatments. The aim of this project is to develop a new approach to corneal tissue regeneration. Previous approaches at engineering corneal tissue have required access to donor cells and lengthy culture periods in an attempt to grow tissue in vitro prior to implantation with only limited success and at great expense. Our approach will differ fundamentally from these in that we will design artificial corneal scaffolds that do not require donated cells or in vitro culture but instead will recruit the patient’s own cells to regenerate the cornea post-implantation. These biomaterial scaffolds will incorporate specific chemical and physical cues with the deliberate aim of attracting cells and inducing tissue formation. Studies will be undertaken to examine how different chemical, biochemical, physical and mechanical cues can be used to control the behaviour of corneal epithelial, stromal and endothelial cells. Once the optimal combination of these cues has been determined, this information will be incorporated into the design of the scaffold. Recent advances in manufacturing and material processing technology will enable us to develop scaffolds with organized nanometric architectures and that incorporate controlled growth factor release mechanisms. Techniques such as 3D bio-printing and nanofiber electrospinning will be used to fabricate scaffolds. The ability of the scaffold to attract cells and promote matrix remodelling will be examined by developing an in vitro bioreactor system capable of mimicking the ocular environment and by performing in vivo tests using a live animal model.

 Publications

year authors and title journal last update
List of publications.
2019 Sophia Masterton, Mark Ahearne
The Effect of Calcium and Glucose Concentration on Corneal Epithelial Cell Lines Differentiation, Proliferation, and Focal Adhesion Expression
published pages: 74-83, ISSN: 2164-7860, DOI: 10.1089/biores.2018.0036
BioResearch Open Access 8/1 2020-01-29
2019 Sophia Masterton, Mark Ahearne
Influence of polydimethylsiloxane substrate stiffness on corneal epithelial cells
published pages: 191796, ISSN: 2054-5703, DOI: 10.1098/rsos.191796
Royal Society Open Science 6/12 2020-01-30
2020 Julia Fernández-Pérez, Karl E. Kador, Amy P. Lynch, Mark Ahearne
Characterization of extracellular matrix modified poly(ε-caprolactone) electrospun scaffolds with differing fiber orientations for corneal stroma regeneration
published pages: 110415, ISSN: 0928-4931, DOI: 10.1016/j.msec.2019.110415
Materials Science and Engineering: C 108 2019-12-16
2019 Promita Bhattacharjee, Julia Fernández-Pérez, Mark Ahearne
Potential for combined delivery of riboflavin and all-trans retinoic acid, from silk fibroin for corneal bioengineering
published pages: 110093, ISSN: 0928-4931, DOI: 10.1016/j.msec.2019.110093
Materials Science and Engineering: C 105 2019-12-16
2019 Julia Fernández-Pérez, Mark Ahearne
The impact of decellularization methods on extracellular matrix derived hydrogels
published pages: , ISSN: 2045-2322, DOI: 10.1038/s41598-019-49575-2
Scientific Reports 9/1 2019-12-16
2018 Julia Fernández-Pérez, Mark Ahearne
Influence of Biochemical Cues in Human Corneal Stromal Cell Phenotype
published pages: 1-12, ISSN: 0271-3683, DOI: 10.1080/02713683.2018.1536216
Current Eye Research 44:2, 135-146 2019-04-18
2018 Sophia Masterton, Mark Ahearne
Mechanobiology of the corneal epithelium
published pages: 122-129, ISSN: 0014-4835, DOI: 10.1016/j.exer.2018.08.001
Experimental Eye Research 177 2019-04-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EYEREGEN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EYEREGEN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

KineTic (2020)

New Reagents for Quantifying the Routing and Kinetics of T-cell Activation

Read More  

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More  

NEUTRAMENTH (2018)

A redox-neutral process for the cost-efficient and environmentally friendly production of Menthol

Read More