Explore the words cloud of the Autophagy in vitro project. It provides you a very rough idea of what is the project "Autophagy in vitro" about.
The following table provides information about the project.
Coordinator |
INSTITUT PASTEUR
Organization address contact info |
Coordinator Country | France [FR] |
Total cost | 1˙499˙726 € |
EC max contribution | 1˙499˙726 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2014-STG |
Funding Scheme | ERC-STG |
Starting year | 2015 |
Duration (year-month-day) | from 2015-04-01 to 2020-09-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | INSTITUT PASTEUR | FR (PARIS CEDEX 15) | coordinator | 1˙185˙057.00 |
2 | MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV | DE (MUENCHEN) | participant | 314˙668.00 |
Autophagy is a catabolic pathway that delivers cytoplasmic material to lysosomes for degradation. Under vegetative conditions, the pathway serves as quality control system, specifically targeting damaged or superfluous organelles and protein-aggregates. Cytotoxic stresses and starvation, however, induces the formation of larger autophagosomes that capture cargo unselectively. Autophagosomes are being generated from a cup-shaped precursor membrane, the isolation membrane, which expands to engulf cytoplasmic components. Sealing of this structure gives rise to the double-membrane surrounded autophagosomes. Two interconnected ubiquitin (Ub)-like conjugation systems coordinate the expansion of autophagosomes by conjugating the autophagy related (Atg)-protein Atg8 to the isolation membrane. In an effort to unravel the function of Atg8, we reconstituted the system on model membranes in vitro and found that Atg8 forms together with the Atg12–Atg5-Atg16 complex a membrane scaffold which is required for productive autophagy in yeast. Humans possess seven Atg8-homologs and two mutually exclusive Atg16-variants. Here, we propose to investigate the function of the human Ub-like conjugation system using a fully reconstituted in vitro system. The spatiotemporal organization of recombinant fluorescent-labeled proteins with synthetic model membranes will be investigated using confocal and TIRF-microscopy. Structural information will be obtained by atomic force and electron microscopy. Mechanistic insights, obtained from the in vitro work, will be tested in vivo in cultured human cells. We belief that revealing 1) the function of the human Ub-like conjugation system in autophagy, 2) the functional differences of Atg8-homologs and the two Atg16-variants Atg16L1 and TECPR1 and 3) how Atg16L1 coordinates non-canonical autophagy will provide essential insights into the pathophysiology of cancer, neurodegenerative, and autoimmune diseases.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AUTOPHAGY IN VITRO" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "AUTOPHAGY IN VITRO" are provided by the European Opendata Portal: CORDIS opendata.
Evolving communication systems in response to altered sensory environments
Read MoreTransgenerational epigenetic inheritance of cardiac regenerative capacity in the zebrafish
Read MoreCancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.
Read More