Opendata, web and dolomites

RED-Heat-to-Power

Conversion of Low Grade Heat to Power through closed loop Reverse Electro-Dialysis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RED-Heat-to-Power project word cloud

Explore the words cloud of the RED-Heat-to-Power project. It provides you a very rough idea of what is the project "RED-Heat-to-Power" about.

group    normal    cell    scaled    tool    advisory    25    pair    salts    heat    stacks    prove    prototype    original    closed    simulation    regulatory    risks    below    saline    dialogue    solutions    membrane    power    scaling    validate    kept    engagement    involve    artificial    gradient    energy    pressures    maximise    lab    regeneration    ensures    volume    reaching    industrial    react    efficiencies    technologies    mrl    stack    configurations    actors    generating    seconds    imposing    electricity    communicate    environmental    combinations    electrodialysis    roadmap    uses    components    board    solvents    15    initiate    03    reverse    generation    2030    suitable    lower    membranes    temperatures    loop    aligned    manufacturing    trl    performance    grade    select    salinity    m2    materials    efficient    stored    flexibility    densities    2025    quiet    levelised    social    tests    date    separation    regenerated    create    revolutionary   

Project "RED-Heat-to-Power" data sheet

The following table provides information about the project.

Coordinator
WIRTSCHAFT UND INFRASTRUKTUR GMBH & CO PLANUNGS KG 

Organization address
address: SYLVENSTEINSTRASSE 2
city: MUENCHEN
postcode: 81369
website: www.wip-munich.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website http://www.red-heat-to-power.eu/
 Total cost 3˙992˙402 €
 EC max contribution 3˙992˙402 € (100%)
 Programme 1. H2020-EU.3.3.5. (New knowledge and technologies)
 Code Call H2020-LCE-2014-1
 Funding Scheme RIA
 Starting year 2015
 Duration (year-month-day) from 2015-05-01   to  2019-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WIRTSCHAFT UND INFRASTRUKTUR GMBH & CO PLANUNGS KG DE (MUENCHEN) coordinator 554˙287.00
2    FUJIFILM MANUFACTURING EUROPE BV NL (TILBURG) participant 1˙004˙500.00
3    UNIVERSITA DEGLI STUDI DI PALERMO IT (PALERMO) participant 934˙406.00
4    THE UNIVERSITY OF EDINBURGH UK (EDINBURGH) participant 402˙771.00
5    REDSTACK BV NL (SNEEK) participant 390˙625.00
6    UNIVERSITAT POLITECNICA DE CATALUNYA ES (BARCELONA) participant 371˙425.00
7    CENTRO DE INVESTIGACIONES ENERGETICAS, MEDIOAMBIENTALES Y TECNOLOGICAS-CIEMAT ES (MADRID) participant 334˙387.00

Map

 Project objective

The concept is based on the generation of electricity from salinity gradient using Reverse Electrodialysis with artificial saline solutions operating in a closed-loop. The original salinity gradient is regenerated by a separation step that uses heat at 40 - 100 C. The regenerated solutions can be stored at very low costs and the stack can react within seconds, providing flexibility to the power system. It is a quiet technology operating under normal pressures and temperatures imposing no risks. The industrial partners ensures the MRL will be kept aligned with the advances in TRL. The overall objective is to prove this revolutionary concept, develop the necessary materials, components and know-how for bringing it to the level of a lab prototype generating electricity from low-grade heat at higher efficiencies and lower costs than ever achieved to date. Specific objectives: Select the most suitable technologies for the regeneration process and the combinations of salts and solvents that can maximise the system performance. Create new knowledge for developing: membranes for the selected solutions; membrane manufacturing concepts that can be scaled-up for high volume and low-cost production; efficient stacks suitable for this application; energy efficient regeneration processes. Implement and validate a process simulation tool to analyse the performance under different configurations and operating conditions. Evaluate and improve the performance of the overall system through tests on a lab-prototype, identifying potential up-scaling and operational issues (System efficiencies reaching 15% and power densities of 25 W/m2 of cell pair). Define a development roadmap, taking into account environmental, social and regulatory issues, leading to levelised cost of electricity below 0.03 Euro/kWh by 2025 to 2030. Involve target group representatives to the Advisory Board and communicate the key results in order to initiate a dialogue and facilitate the engagement of key actors.

 Deliverables

List of deliverables.
Roadmap Documents, reports 2020-02-26 15:11:02
Process simulator application Documents, reports 2020-02-26 15:11:02
2nd webvideo Websites, patent fillings, videos etc. 2020-02-26 15:11:02
Communication and promotion activities Documents, reports 2020-02-26 15:11:02
2nd leaflet Websites, patent fillings, videos etc. 2020-02-26 15:11:02
Dissemination and exploitation plan Documents, reports 2020-02-26 15:11:02
Economic evaluation report Documents, reports 2020-02-26 15:11:02
Report on the perspectives of the technology Documents, reports 2020-02-26 15:11:02
Advanced process simulator Documents, reports 2020-02-26 15:11:02
Report on environmental, social and other potential issues Documents, reports 2020-02-26 15:11:03
Basic modelling tool Documents, reports 2020-02-26 15:11:02
1st webvideo Websites, patent fillings, videos etc. 2020-02-26 15:11:00
Adsorption/desorption heat pumps impact Documents, reports 2020-02-26 15:10:59
Pre-selection report Documents, reports 2020-02-26 15:11:02
Comparative performance analysis Documents, reports 2020-02-26 15:11:00
Design guidelines Documents, reports 2020-02-26 15:10:59
1st leaflet Websites, patent fillings, videos etc. 2020-02-26 15:11:00
Very low temperature regeneration preliminary assessment Documents, reports 2020-02-26 15:11:00
Website Websites, patent fillings, videos etc. 2020-02-26 15:10:59

Take a look to the deliverables list in detail:  detailed list of RED-Heat-to-Power deliverables.

 Publications

year authors and title journal last update
List of publications.
2019 F. Giacalone, F. Vassallo, L. Griffin, M.C. Ferrari, G. Micale, F. Scargiali, A. Tamburini, A. Cipollina
Thermolytic reverse electrodialysis heat engine: model development, integration and performance analysis
published pages: 1-13, ISSN: 0196-8904, DOI: 10.1016/j.enconman.2019.03.045
Energy Conversion and Management 189 2020-02-26
2019 B. Ortega-Delgado, F. Giacalone, P. Catrini, A. Cipollina, A. Piacentino, A. Tamburini, G. Micale
Reverse electrodialysis heat engine with multi-effect distillation: Exergy analysis and perspectives
published pages: 140-159, ISSN: 0196-8904, DOI: 10.1016/j.enconman.2019.04.056
Energy Conversion and Management 194 2020-02-26
2019 Michael Papapetrou, George Kosmadakis, Francesco Giacalone, Bartolomé Ortega-Delgado, Andrea Cipollina, Alessandro Tamburini, Giorgio Micale
Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion using a Reverse Electrodialysis – Multi-Effect Distillation System
published pages: 3206, ISSN: 1996-1073, DOI: 10.3390/en12173206
Energies 12/17 2020-02-26
2019 Battaglia, Gurreri, Farulla, Cipollina, Pirrotta, Micale, Ciofalo
Membrane Deformation and Its Effects on Flow and Mass Transfer in the Electromembrane Processes
published pages: 1840, ISSN: 1422-0067, DOI: 10.3390/ijms20081840
International Journal of Molecular Sciences 20/8 2020-02-26
2019 C. Olkis, S. Brandani, G. Santori
A small-scale adsorption desalinator
published pages: 1425-1430, ISSN: 1876-6102, DOI: 10.1016/j.egypro.2019.01.345
Energy Procedia 158 2020-02-26
2019 F. Giacalone, C. Olkis, G. Santori, A. Cipollina, S. Brandani, G. Micale
Novel solutions for closed-loop reverse electrodialysis: Thermodynamic characterisation and perspective analysis
published pages: 674-689, ISSN: 0360-5442, DOI: 10.1016/j.energy.2018.10.049
Energy 166 2020-02-26
2018 Fabrizio Vicari, Adriana D’Angelo, Yohan Kouko, Alessandro Loffredi, Alessandro Galia, Onofrio Scialdone
On the regeneration of thermally regenerative ammonia batteries
published pages: 1381-1388, ISSN: 0021-891X, DOI: 10.1007/s10800-018-1240-0
Journal of Applied Electrochemistry 48/12 2020-02-26
2019 M. Micari, A. Cipollina, F. Giacalone, G. Kosmadakis, M. Papapetrou, G. Zaragoza, G. Micale, A. Tamburini
Towards the first proof of the concept of a Reverse ElectroDialysis - Membrane Distillation Heat Engine
published pages: 77-88, ISSN: 0011-9164, DOI: 10.1016/j.desal.2018.11.022
Desalination 453 2020-02-26
2018 C. Olkis, G. Santori, S. Brandani
An Adsorption Reverse Electrodialysis system for the generation of electricity from low-grade heat
published pages: 222-234, ISSN: 0306-2619, DOI: 10.1016/j.apenergy.2018.09.112
Applied Energy 231 2020-02-26
2018 Patricia Palenzuela, Marina Micari, Bartolomé Ortega-Delgado, Francesco Giacalone, Guillermo Zaragoza, Diego-César Alarcón-Padilla, Andrea Cipollina, Alessandro Tamburini, Giorgio Micale
Performance Analysis of a RED-MED Salinity Gradient Heat Engine
published pages: 3385, ISSN: 1996-1073, DOI: 10.3390/en11123385
Energies 11/12 2020-02-26
2018 George Kosmadakis, Michael Papapetrou, Bartolomé Ortega-Delgado, Andrea Cipollina, Diego-César Alarcón-Padilla
Correlations for estimating the specific capital cost of multi-effect distillation plants considering the main design trends and operating conditions
published pages: 74-83, ISSN: 0011-9164, DOI: 10.1016/j.desal.2018.09.011
Desalination 447 2020-02-26
2018 F. Giacalone, P. Catrini, A. Tamburini, A. Cipollina, A. Piacentino, G. Micale
Exergy analysis of reverse electrodialysis
published pages: 588-602, ISSN: 0196-8904, DOI: 10.1016/j.enconman.2018.03.014
Energy Conversion and Management 164 2020-02-26
2018 Joost Veerman, Damnearn Kunteng
Inorganic Pseudo Ion Exchange Membranes—Concepts and Preliminary Experiments
published pages: 2142, ISSN: 2076-3417, DOI: 10.3390/app8112142
Applied Sciences 8/11 2020-02-26
2017 Mohammad Rahimi, Adriana D\'Angelo, Christopher A. Gorski, Onofrio Scialdone, Bruce E. Logan
Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery
published pages: 45-50, ISSN: 0378-7753, DOI: 10.1016/j.jpowsour.2017.03.074
Journal of Power Sources 351 2020-02-26
2017 M. La Cerva, M. Di Liberto, L. Gurreri, A. Tamburini, A. Cipollina, G. Micale, M. Ciofalo
Coupling CFD with a one-dimensional model to predict the performance of reverse electrodialysis stacks
published pages: 595-610, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2017.07.030
Journal of Membrane Science 541 2020-02-26
2018 M. Micari, M. Bevacqua, A. Cipollina, A. Tamburini, W. Van Baak, T. Putts, G. Micale
Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications
published pages: 315-325, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2018.01.036
Journal of Membrane Science 551 2020-02-26
2017 A. Tamburini, M. Tedesco, A. Cipollina, G. Micale, M. Ciofalo, M. Papapetrou, W. Van Baak, A. Piacentino
Reverse electrodialysis heat engine for sustainable power production
published pages: 1334-1353, ISSN: 0306-2619, DOI: 10.1016/j.apenergy.2017.10.008
Applied Energy 206 2020-02-26
2017 L. Gurreri, G. Battaglia, A. Tamburini, A. Cipollina, G. Micale, M. Ciofalo
Multi-physical modelling of reverse electrodialysis
published pages: 52-64, ISSN: 0011-9164, DOI: 10.1016/j.desal.2017.09.006
Desalination 423 2020-02-26
2017 Michael Papapetrou, Andrea Cipollina, Umberto La Commare, Giorgio Micale, Guillermo Zaragoza, George Kosmadakis
Assessment of methodologies and data used to calculate desalination costs
published pages: 8-19, ISSN: 0011-9164, DOI: 10.1016/j.desal.2017.05.038
Desalination 419 2020-02-26
2017 Mariagiorgia La Cerva, Michele Ciofalo, Luigi Gurreri, Alessandro Tamburini, Andrea Cipollina, Giorgio Micale
On some issues in the computational modelling of spacer-filled channels for membrane distillation
published pages: 101-111, ISSN: 0011-9164, DOI: 10.1016/j.desal.2017.02.016
Desalination 411 2020-02-26
2017 Andriy Yaroshchuk
“Breakthrough” osmosis and unusually high power densities in Pressure-Retarded Osmosis in non-ideally semi-permeable supported membranes
published pages: , ISSN: 2045-2322, DOI: 10.1038/srep45168
Scientific Reports 7/1 2020-02-26
2017 M. Bevacqua, A. Tamburini, M. Papapetrou, A. Cipollina, G. Micale, A. Piacentino
Reverse electrodialysis with NH 4 HCO 3 -water systems for heat-to-power conversion
published pages: 1293-1307, ISSN: 0360-5442, DOI: 10.1016/j.energy.2017.07.012
Energy 137 2020-02-26
2016 M. Bevacqua, A. Carubia, A. Cipollina, A. Tamburini, M. Tedesco, G. Micale
Performance of a RED system with ammonium hydrogen carbonate solutions
published pages: 23007-23018, ISSN: 1944-3994, DOI: 10.1080/19443994.2015.1126410
Desalination and Water Treatment 57/48-49 2020-02-26
2017 Francesco Nicolò Ponzio, Alessandro Tamburini, Andrea Cipollina, Giorgio Micale, Michele Ciofalo
Experimental and computational investigation of heat transfer in channels filled by woven spacers
published pages: 163-177, ISSN: 0017-9310, DOI: 10.1016/j.ijheatmasstransfer.2016.08.023
International Journal of Heat and Mass Transfer 104 2020-02-26

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RED-HEAT-TO-POWER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RED-HEAT-TO-POWER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.3.5.)

SWInG (2015)

Development of thin film Solar cells based on WIde band Gap kesterite absorbers

Read More  

Nano-Tandem (2015)

Nanowire based Tandem Solar Cells

Read More  

WETFEET (2015)

Wave Energy Transition to Future by Evolution of Engineering and Technology

Read More