Opendata, web and dolomites

SOS-Nano

Structure – Oxidative Stress relationships of metal oxide nanoparticles in the aquatic environment

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SOS-Nano project word cloud

Explore the words cloud of the SOS-Nano project. It provides you a very rough idea of what is the project "SOS-Nano" about.

influence    gaining    suitability    cutting    totally    ranking    experimental    forefront    2020    innovative    environment    sound    physical    released    industrial    economic    ranked    competitiveness    world    sustainability    econanotoxicology    natural    nanosafety    million    uk    2015    environments    toward    employers    six    vitro    international    market    science    opportunity    oxidative    edge    genomics    biological    expert    property    oxide    stress    tasked    nanotechnology    exeter    risk    structure    join    environmental    limitation    grand    universities    nanoparticles    electrochemical    predicting    pressing    generation    relationships    technologies    university    exposure    structural    interdisciplinary    toxicity    vivo    lack    networking    sink    industry    demonstrated    predict    functional    methodology    combining    societal    safe    human    sos    she    nps    perfect    metal    tier    water    us    realise    hazard    host    ecotoxicology    community    final    trillion    nano    paradigms    nanoscience    aquatic    nanotechnologies    plan    toxic   

Project "SOS-Nano" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF EXETER 

Organization address
address: THE QUEEN'S DRIVE NORTHCOTE HOUSE
city: EXETER
postcode: EX4 4QJ
website: www.ex.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.exeter.ac.uk/research/marine/
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-11-01   to  2017-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF EXETER UK (EXETER) coordinator 183˙454.00

Map

 Project objective

The SOS-Nano project will address one of the most pressing cutting edge issues of econanotoxicology at present: to find a structural property of nanoparticles (NPs) to predict their potential toxicity in real aquatic environments, the final sink of released NPs. By using an in vivo natural water exposure system, SOS-Nano will test the suitability of two paradigms, recently demonstrated effective in vitro for ranking the hazard of metal oxide NPs: 1) NPs physical-electrochemical properties for predicting oxidative stress potential, and 2) oxidative stress generation for predicting biological impact. The experimental plan of SOS-Nano is totally innovative for design and methodology: the relationships between NPs structure and toxic activity will be studied under the influence of natural water properties, and the toxic potential will be ranked through a multi-tier system combining genomics and functional measurements. The science of SOS-Nano will have high impact: nanotechnology is one of the six EU Key Enabling Technologies selected by the EU Commission to address the industrial-economic competitiveness and the grand societal challenges in Europe by 2020 (US$ 2.5 trillion of world market, 2 million of employers by 2015). The lack of a sound human and environmental risk assessment of NPs is now the major limitation to the safe growth of this economic sector, and the EU research community is tasked with addressing the nanotechnologies development toward sustainability. The SOS-Nano project will represent the perfect opportunity for the applicant to join a cutting edge working environment in which she will realise her potential as a leading nanosafety expert in EU. The host Institution, the University of Exeter, is in the top 10 UK Universities which will provide exciting opportunities for gaining interdisciplinary experience of novel approaches in ecotoxicology and for networking with industry and international partners at the forefront of environmental nanoscience.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SOS-NANO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SOS-NANO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RAMBEA (2019)

Realistic Assessment of Historical Masonry Bridges under Extreme Environmental Actions

Read More  

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More  

RegARcis (2020)

Role of the SWI/SNF complex in the Androgen Receptor cistrome regulation

Read More