Opendata, web and dolomites

Re.B.Us

Rewiring Brain Units - bridging the gap of neuronal communication by means of intelligent hybrid systems

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Re.B.Us project word cloud

Explore the words cloud of the Re.B.Us project. It provides you a very rough idea of what is the project "Re.B.Us" about.

strategies    tissue    re    intend    anatomical    therapeutic    functional    adaptive    predictable    technically    restore    nervous    limitations    themselves    commitment    host    communication    disorders    hybrid    central    interaction    healing    poorly    benefit    controller    neurons    boundaries    physiological    circuits    bi    either    function    pursuing    plasticity    mediates    restoring    self    brain    cope    overcome    unexpected    intelligent    device    stability    cns    economy    dependent    dysfunction    pitfalls    suitable    undoubtedly    dysfunctional    intrinsic    biocompatible    day    pharmacological    global    sole    diseased    reducing    suffering    virtue    health    prevention    dynamics    provides    significantly    conceived    neuronal    graft    previously    behavior    silicon    treatment    neural    burden    partnership    tunes    societal    primary    people    endowed    integration    innovative    biological    limited    transplants    directional    biohybrid    public    broken    network    inherent    core    consequently    engineering    financial    exploring    of    flexibility    fine    obtaining    unprecedented    neuroprostheses    disease    pathophysiological   

Project "Re.B.Us" data sheet

The following table provides information about the project.

Coordinator
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA 

Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163
website: www.iit.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Project website http://www.rebus-project.eu
 Total cost 180˙277 €
 EC max contribution 180˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-03-16   to  2018-03-15

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA IT (GENOVA) coordinator 180˙277.00

Map

 Project objective

People suffering for disorders of the Central Nervous System (CNS) often have to cope with every-day challenges. In spite of our strong commitment to primary prevention, CNS disorders significantly impact on the global burden of disease. Thus, restoring the physiological function of a dysfunctional brain is a primary challenge. As pharmacological treatment is not suitable to restore broken neuronal pathways, research is exploring biological and engineering approaches, but the sole exploitation of either of these strategies is technically limited by inherent pitfalls. Neural transplants benefit of the intrinsic plasticity of ‘real’ neurons, yet the interaction of the graft with the host nervous tissue is consequently poorly predictable. Silicon-based technology provides highly controllable systems, yet at the cost of limited flexibility. Here, we intend to overcome these limitations by exploiting a novel ‘hybrid’ approach. We will establish a functional partnership between a biological ‘graft’ neuronal network and an intelligent controller that fine-tunes the dynamics of the graft by activity-dependent neural control and mediates its integration into the diseased host nervous tissue. We aim at obtaining a biocompatible hybrid device of previously unexpected stability, capable of pursuing a self-healing process of dysfunctional neuronal circuits. The novel biohybrid system conceived in Re.B.Us will be at the core of further development of innovative neuroprostheses endowed with intrinsic adaptive behavior and capable of bi-directional communication with the host CNS, that would restore, by themselves, the function of a diseased brain, with no anatomical or pathophysiological boundaries. By virtue of its unprecedented therapeutic potential, Re.B.Us will undoubtedly impact on EU economy by reducing the financial burden of public health and improving the societal impact of CNS dysfunction.

 Publications

year authors and title journal last update
List of publications.
2016 Gabriella Panuccio, Marianna Semprini, Michela Chiappalone
Intelligent biohybrid systems for functional brain repair
published pages: 162-174, ISSN: 2307-5023, DOI: 10.1016/j.nhtm.2016.10.001
New Horizons in Translational Medicine 3/3-4 2019-06-18
2018 Panuccio G, Colombi I, Chiappalone M.
Recording and Modulation of Epileptiform Activity in Rodent Brain Slices Coupled to Micro Electrode Arrays.
published pages: e57584, ISSN: 1940-087X, DOI: 10.3791/57548
Journal of Visualized Experiments 2019-06-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RE.B.US" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RE.B.US" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

ICL CHROM (2020)

DNA interstrand crosslink repair and chromatin remodelling

Read More