Opendata, web and dolomites

HEATSENS_S

Lab-on-a-chip microfluidic device based on plasmonicdriven thermal sensing for rapid detection of Salmonella typhimurium in agro-food field.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "HEATSENS_S" data sheet

The following table provides information about the project.

Coordinator
NANOIMMUNOTECH SL 

Organization address
address: EDIFICIO CITEXVI C FONTE DAS ABELLE SN CAMPUS UNIVERSITARIO DE VIGO
city: VIGO PONTEVEDRA
postcode: 36310
website: www.nanoimmunotech.eu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website http://www.heatsens.com/
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.2.1.4. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Biotechnology)
2. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
 Code Call H2020-SMEINST-1-2014
 Funding Scheme SME-1
 Starting year 2015
 Duration (year-month-day) from 2015-05-01   to  2015-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    NANOIMMUNOTECH SL ES (VIGO PONTEVEDRA) coordinator 50˙000.00

Map

 Project objective

NANOIMMUNOTECH (NIT), a leading company in nanobiotechnology with know-how that has been applied to the field of nanobiosensing and especially the agro-food sector introduces HEATSENS in the poultry industry: a solution that transforms into a portable and easy-to-use device with its most cutting-edge know-how in biosensors. HEATSENS is based on a revolutionary nanobiosensing technology owned by the company, whose main characteristics (highly sensitive, rapid detection and simplicity) are the ideal response to a clear need in this sector to test for Salmonella. Salmonella is the second most commonly reported gastrointestinal infection, requiring hospitalisation in many cases, and it can be fatal. One of the most common ways of contracting it is by eating contaminated chicken meat; thus meat companies are required to carry out periodic tests, for which they send samples to specialist laboratories that have a response time of up to 7 days for the analyses, which may mean financial losses. Given that this technology fits into the NIT development strategy, it was decided to perform proofs of concept with several companies in the sector, which clearly showed that HEATSENS_S detects Salmonella at a higher sensitivity in only 3 hours. In light of these results, these potential customers have already shown their keen interest in HEATSENS_S. Now, its conversion into an easy-to-use portable device makes performing in-house testing possible throughout the production chain, providing companies with greater control over product quality and avoiding losses associated with contamination not detected in time, all at a lower cost than current tests today. NIT Management considers this to be the optimum catalyst for the growth of the company and its expansion worldwide and HEATSENS, the flagship product, to make their efforts profitable in nanobiosensing.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HEATSENS_S" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HEATSENS_S" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.4.;H2020-EU.2.3.1.)

FlexiBiome (2018)

Next Generation Microbiome Platform

Read More  

SEQURE (2018)

Targeted complete next-generation sequencing for companion diagnostics and personalized treatment of cancer

Read More  

N-IF (2017)

The N-IF mouse – a new and unique fibrosis model for preclinical efficacy studies

Read More