Explore the words cloud of the LOFAR project. It provides you a very rough idea of what is the project "LOFAR" about.
The following table provides information about the project.
Coordinator |
VRIJE UNIVERSITEIT BRUSSEL
Organization address contact info |
Coordinator Country | Belgium [BE] |
Total cost | 1˙500˙000 € |
EC max contribution | 1˙500˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2014-STG |
Funding Scheme | ERC-STG |
Starting year | 2015 |
Duration (year-month-day) | from 2015-06-01 to 2020-05-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | VRIJE UNIVERSITEIT BRUSSEL | BE (BRUSSEL) | coordinator | 1˙500˙000.00 |
The origin of cosmic rays remains one of the largest mysteries in astrophysics. Innovative and accurate radio measurements of cosmic rays and neutrinos with LOFAR promise to provide new answers. It is generally believed that ultra-high-energy cosmic rays are produced in extragalactic sources like gamma- ray bursts or active galactic nuclei, while the lower energy cosmic rays come from our own Galaxy. At what energy this transition takes place is still unknown. Here we focus on disentangling Galactic and extragalactic components by studying the mass composition between 10^17 and 10^18 eV, a regime that is also crucial for understanding the origin of the extraterrestrial neutrinos detected by IceCube. We do this with LOFAR, the first radio telescope that can detect individual cosmic rays with hundreds of antennas. This incredible level of detail allowed us to finally understand the complicated radiation mechanism and to perform the first-ever accurate mass analysis based on radio measurements. Our first data reveal a strong proton component below 10^18 eV, suggesting an early transition to an extragalactic component. With upgrades to our detector and techniques we will be able to improve our sample size by an order of magnitude, resolve more mass components, and identify the origin of high-energy cosmic rays and neutrinos. The technique may be scaled up to higher energies, measured at the Pierre Auger Observatory, where mass information is needed to correlate cosmic rays with their astrophysical sources and to confirm the nature of the cutoff at ~10^19.6 eV. We can even search for particles beyond the GZK limit. With the Westerbork telescope we have already set the best limit on cosmic rays and neutrinos above 10^23 eV. With LOFAR we will achieve a much better sensitivity at lower energies, also probing for new physics, like the decays of cosmic strings predicted by supersymmetric theories.
year | authors and title | journal | last update |
---|---|---|---|
2016 |
A. Corstanje, S. Buitink, J. E. Enriquez, H. Falcke, J. R. Hörandel, M. Krause, A. Nelles, J. P. Rachen, P. Schellart, O. Scholten, S. ter Veen, S. Thoudam, T. N. G. Trinh Timing calibration and spectral cleaning of LOFAR time series data published pages: A41, ISSN: 0004-6361, DOI: 10.1051/0004-6361/201527809 |
Astronomy & Astrophysics 590 | 2019-05-29 |
2016 |
O. Scholten, T. N. G. Trinh, A. Bonardi, S. Buitink, P. Correa, A. Corstanje, Q. Dorosti Hasankiadeh, H. Falcke, J. R. Hörandel, P. Mitra, K. Mulrey, A. Nelles, J. P. Rachen, L. Rossetto, P. Schellart, S. Thoudam, S. ter Veen, K. D. de Vries, T. Winchen Measurement of the circular polarization in radio emission from extensive air showers confirms emission mechanisms published pages: , ISSN: 2470-0010, DOI: 10.1103/PhysRevD.94.103010 |
Physical Review D 94/10 | 2019-05-29 |
2016 |
S. Buitink, A. Corstanje, H. Falcke, J. R. Hörandel, T. Huege, A. Nelles, J. P. Rachen, L. Rossetto, P. Schellart, O. Scholten, S. ter Veen, S. Thoudam, T. N. G. Trinh, J. Anderson, A. Asgekar, I. M. Avruch, M. E. Bell, M. J. Bentum, G. Bernardi, P. Best, A. Bonafede, F. Breitling, J. W. Broderick, W. N. Brouw, M. Brüggen, H. R. Butcher, D. Carbone, B. Ciardi, J. E. Conway, F. de Gasperin, E. de Geus, A. Deller, R.-J. Dettmar, G. van Diepen, S. Duscha, J. Eislöffel, D. Engels, J. E. Enriquez, R. A. Fallows, R. Fender, C. Ferrari, W. Frieswijk, M. A. Garrett, J. M. Grießmeier, A. W. Gunst, M. P. van Haarlem, T. E. Hassall, G. Heald, J. W. T. Hessels, M. Hoeft, A. Horneffer, M. Iacobelli, H. Intema, E. Juette, A. Karastergiou, V. I. Kondratiev, M. Kramer, M. Kuniyoshi, G. Kuper, J. van Leeuwen, G. M. Loose, P. Maat, G. Mann, S. Markoff, R. McFadden, D. McKay-Bukowski, J. P. McKean, M. Mevius, D. D. Mulcahy, H. Munk, M. J. Norden, E. Orru, H. Paas, M. Pandey-Pommier, V. N. Pandey, M. Pietka, R. Pizzo, A. G. Polatidis, W. Reich, H. J. A. Röttgering, A. M. M. Scaife, D. J. Schwarz, M. Serylak, J. Sluman, O. Smirnov, B. W. Stappers, M. Steinmetz, A. Stewart, J. Swinbank, M. Tagger, Y. Tang, C. Tasse, M. C. Toribio, R. Vermeulen, C. Vocks, C. Vogt, R. J. van Weeren, R. A. M. J. Wijers, S. J. Wijnholds, M. W. Wise, O. Wucknitz, S. Yatawatta, P. Zarka, J. A. Zensus A large light-mass component of cosmic rays at 1017–1017.5 electronvolts from radio observations published pages: 70-73, ISSN: 0028-0836, DOI: 10.1038/nature16976 |
Nature 531/7592 | 2019-05-29 |
2015 |
A. Nelles, J. R. Hörandel, T. Karskens, M. Krause, S. Buitink, A. Corstanje, J. E. Enriquez, M. Erdmann, H. Falcke, A. Haungs, R. Hiller, T. Huege, R. Krause, K. Link, M. J. Norden, J. P. Rachen, L. Rossetto, P. Schellart, O. Scholten, F. G. Schröder, S. ter Veen, S. Thoudam, T. N. G. Trinh, K. Weidenhaupt, S. J. Wijnholds, J. Anderson, L. Bähren, M. E. Bell, M. J. Bentum, P. Best, A. Bonafede, J. Bregman, W. N. Brouw, M. Brüggen, H. R. Butcher, D. Carbone, B. Ciardi, F. de Gasperin, S. Duscha, J. Eislöffel, R. A. Fallows, W. Frieswijk, M. A. Garrett, M. P. van Haarlem, G. Heald, M. Hoeft, A. Horneffer, M. Iacobelli, E. Juette, A. Karastergiou, J. Kohler, V. I. Kondratiev, M. Kuniyoshi, G. Kuper, J. van Leeuwen, P. Maat, R. McFadden, D. McKay-Bukowski, E. Orru, H. Paas, M. Pandey-Pommier, V. N. Pandey, R. Pizzo, A. G. Polatidis, W. Reich, H. Röttgering, D. Schwarz, M. Serylak, J. Sluman, O. Smirnov, C. Tasse, M. C. Toribio, R. Vermeulen, R. J. van Weeren, R. A. M. J. Wijers, O. Wucknitz, P. Zarka Calibrating the absolute amplitude scale for air showers measured at LOFAR published pages: P11005-P11005, ISSN: 1748-0221, DOI: 10.1088/1748-0221/10/11/P11005 |
Journal of Instrumentation 10/11 | 2019-05-29 |
2016 |
T. N. G. Trinh, O. Scholten, S. Buitink, A. M. van den Berg, A. Corstanje, U. Ebert, J. E. Enriquez, H. Falcke, J. R. Hörandel, C. Köhn, A. Nelles, J. P. Rachen, L. Rossetto, C. Rutjes, P. Schellart, S. Thoudam, S. ter Veen, K. D. de Vries Influence of atmospheric electric fields on the radio emission from extensive air showers published pages: , ISSN: 2470-0010, DOI: 10.1103/PhysRevD.93.023003 |
Physical Review D 93/2 | 2019-05-29 |
2016 |
S. Thoudam, J. P. Rachen, A. van Vliet, A. Achterberg, S. Buitink, H. Falcke, J. R. Hörandel Cosmic-ray energy spectrum and composition up to the ankle: the case for a second Galactic component published pages: A33, ISSN: 0004-6361, DOI: 10.1051/0004-6361/201628894 |
Astronomy & Astrophysics 595 | 2019-05-29 |
2016 |
L Rossetto, S Buitink, A Corstanje, J E Enriquez, H Falcke, J R Hörandel, A Nelles, J P Rachen, P Schellart, O Scholten, S ter Veen, S Thoudam, T N G Trinh Measurement of cosmic rays with LOFAR published pages: 52035, ISSN: 1742-6588, DOI: 10.1088/1742-6596/718/5/052035 |
Journal of Physics: Conference Series 718 | 2019-05-29 |
2016 |
G. Maggi, S. Buitink, P. Correa, K. D. de Vries, G. Gentile, J. León Tavares, O. Scholten, N. van Eijndhoven, M. Vereecken, T. Winchen Obscured flat spectrum radio active galactic nuclei as sources of high-energy neutrinos published pages: , ISSN: 2470-0010, DOI: 10.1103/PhysRevD.94.103007 |
Physical Review D 94/10 | 2019-04-18 |
2017 |
T. N. G. Trinh, O. Scholten, A. Bonardi, S. Buitink, A. Corstanje, U. Ebert, J. E. Enriquez, H. Falcke, J. R. Hörandel, B. M. Hare, P. Mitra, K. Mulrey, A. Nelles, J. P. Rachen, L. Rossetto, C. Rutjes, P. Schellart, S. Thoudam, S. ter Veen, T. Winchen Thunderstorm electric fields probed by extensive air showers through their polarized radio emission published pages: , ISSN: 2470-0010, DOI: 10.1103/PhysRevD.95.083004 |
Physical Review D 95/8 | 2019-04-18 |
2017 |
A. Corstanje, A. Bonardi, S. Buitink, H. Falcke, J.R. Hörandel, P. Mitra, K. Mulrey, A. Nelles, J.P. Rachen, L. Rossetto, P. Schellart, O. Scholten, S. ter Veen, S. Thoudam, G. Trinh, T. Winchen The effect of the atmospheric refractive index on the radio signal of extensive air showers published pages: 23-29, ISSN: 0927-6505, DOI: 10.1016/j.astropartphys.2017.01.009 |
Astroparticle Physics 89 | 2019-04-18 |
2018 |
Tobias Winchen, Stijn Buitink Energy spectrum of fast second order Fermi accelerators as sources of ultra-high-energy cosmic rays published pages: 25-31, ISSN: 0927-6505, DOI: 10.1016/j.astropartphys.2018.04.004 |
Astroparticle Physics 102 | 2019-04-18 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LOFAR" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "LOFAR" are provided by the European Opendata Portal: CORDIS opendata.
Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.
Read MoreConstraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks
Read More