Opendata, web and dolomites

3D-COUNT

3D-Integrated single photon detector

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "3D-COUNT" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA 

Organization address
address: Piazzale Aldo Moro 5
city: ROMA
postcode: 185
website: www.uniroma1.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-PoC
 Funding Scheme ERC-POC
 Starting year 2016
 Duration (year-month-day) from 2016-02-01   to  2017-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA IT (ROMA) coordinator 76˙250.00
2    CONSIGLIO NAZIONALE DELLE RICERCHE IT (ROMA) participant 73˙750.00

Map

 Project objective

Photonics, in recognition of its strategic significance and pervasiveness throughout many industrial sectors, has been identified as one of the Key Enabling Technologies for Europe. Photonics in combination with quantum information science has great potential to facilitate, transform and innovate future technologies for the better. The Proof of Concept (PoC) project intends to contribute to this by developing and testing a communication platform prototype, comprised of single photon detectors, which are efficiently coupled to single mode fibers using an innovative laser written device. This enables the integration of single photon detectors on innovative glass waveguides. These glass integrated photonic circuits offer excellent specifics for on-chip quantum optics implementations in terms of scattering losses, offering flexibility of the waveguide geometry and ensuring high coupling efficiency with optical fibers. The device developed and tested in the PoC, directly addresses a market need for an integrated and efficient on-chip communication systems. Current available systems have limitations involving high costs, complex production, and inefficient coupling of detectors to optical fibers. The proposed platform will offer 1.) a simplified production process, 2.) high optical fiber coupling efficiency 3.) improved performance levels, 4.) high cost efficiency, and 5.) compactness. Such systems can be applied in a wide range of communication and non-communication applications, such as free-space optical communication, quantum communication, quantum cryptography, DNA sequencing, single molecule detection and material analysis. Moreover, the future commercialisation of quantum computing is expected to create a vast demand for these communication systems. In addition to the technology PoC, the project carries out IPR strategy considerations through patenting actions, determines the market potential, seeks market feedback, and plans for post-PoC commercialisation paths.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "3D-COUNT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "3D-COUNT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More  

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More