Opendata, web and dolomites

NanoPacks SIGNED

NanoPacks: Assembling nanoparticles via evaporation-driven droplet collapse for ultrasensitive detection techniques

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NanoPacks project word cloud

Explore the words cloud of the NanoPacks project. It provides you a very rough idea of what is the project "NanoPacks" about.

sorts    secondly    interaction    tiny    until    relying    experimentally    droplet    boosted    raman    molecules    analytes    attractive    brings    vanishes    solutes    explore    microfluidics    detect    spectroscopy    adverse    designed    assembly    metallic    diseases    drops    manipulating    nanoplasmonics    femtomolar    successfully    packings    expensive    form    complete    surfaces    physical    consists    shape    physics    containing    techniques    statistical    specially    interactions    ultrasensitive    evaporates    nanoparticle    questions    imposing    simulations    nanophotonics    nanostructured    chemistry    fabrication    aggregates    paradigm    adsorption    structures    concentrations    enhanced    collapse    particle    first    solvent    self    nanotechnology    assembling    thermodynamics    nanoparticles    foundation    assemble    blocks    scientific    passive    surface    detection    left    evaporating    rely    amount    generally    nanostructures    plasmonic    analyte    limitations    severe    single    modeling    fluorescence    packing    building    applicability   

Project "NanoPacks" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT TWENTE 

Organization address
address: DRIENERLOLAAN 5
city: ENSCHEDE
postcode: 7522 NB
website: www.utwente.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website http://marin-lab.com
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-08-01   to  2021-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT TWENTE NL (ENSCHEDE) coordinator 1˙500˙000.00

Map

 Project objective

The foundation of nanophotonics and nanoplasmonics has boosted the development of ultrasensitive detection techniques. Some of these techniques, such as Surface Enhanced Raman Spectroscopy or Surface Enhanced Fluorescence, are able to detect femtomolar concentrations of analytes or even single molecules, only relying on the adsorption of the analytes on a nanostructured surfaces.

The development of nanotechnology requires a high control on the building blocks of the structures. The concept of self-assembly has been introduced and successfully applied in recent years to build all sorts of nanostructures. However, self-assembly generally involves an attractive interaction of the elements which requires the use of specially designed nanoparticles, thus imposing severe limitations in the applicability of self-assembly.

The approach I want to explore in this project is a complete change of paradigm which consists on assembling nanostructures through the collapse of evaporating drops: A droplet, containing both metallic nanoparticles and a tiny amount of analyte molecules, evaporates until the whole solvent vanishes and only the solutes are left. By manipulating the way the droplet evaporates, we can control the shape and properties of the remains, and therefore assemble metallic nanoparticles together with the molecules of interest in a passive way. The project will increase the reach of plasmonic-based techniques for the early detection of diseases: First, the approach does not rely on expensive fabrication techniques, but only on the thermodynamics and the statistical physics of the particle packings. Secondly, by using a physical approach to form nanoparticle and analyte aggregates, we avoid adverse interactions with the analyte’s chemistry.

The packing of metallic nanoparticles presents new challenges and brings several scientific questions that I will address experimentally through microfluidics, but also via simulations and modeling.

 Publications

year authors and title journal last update
List of publications.
2019 M. A. Bruning, M. Costalonga, J. H. Snoeijer, A. Marin
Turning Drops into Bubbles: Cavitation by Vapor Diffusion through Elastic Networks
published pages: , ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.123.214501
Physical Review Letters 123/21 2020-02-13
2019 Myrthe Bruning, Laura Loeffen, Alvaro Marin
Particle monolayer growth in evaporating salty colloidal droplets
published pages: , ISSN: , DOI:
Bulletin of the American Physical Society 72nd Annual Meeting of the APS 2020-02-13
2019 Carola Seyfert, Eva Krolis, Erwin J.W. Berenschot, Arturo Susarrey-Arce, Niels Tas, Alvaro Marin
Particle aggregates via droplet evaporation on superhydrophobic fractal-like substrates
published pages: , ISSN: , DOI:
Bulletin of the American Physical Society 72nd Annual Meeting of the APS 2020-02-13
2019 Alvaro Marin, Sander Huisman, Maurice Mikkers
The Morphology of Parched Tears
published pages: , ISSN: , DOI:
Bulletin of the American Physical Society 72nd Annual Meeting of the APS 2020-02-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOPACKS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOPACKS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More  

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More