Opendata, web and dolomites

CONTREX SIGNED

Controlling Triplet Excitons in Organic Semiconductors

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CONTREX" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙025˙999 €
 EC max contribution 1˙025˙999 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2019-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 789˙041.00
2    UNIVERSITY COLLEGE LONDON UK (LONDON) participant 236˙958.00

Map

 Project objective

The urgent need to reduce carbon emissions in order to mitigate climate change requires the development of clean, renewable energy sources. Solar power offers a virtually unlimited supply of energy, providing it can be harnessed efficiently. Traditional silicon solar cells demonstrate high performance (~20%) but their required method of manufacture prohibits large area production rendering them too expensive to be used on a global scale. Organic solar cells (made from conjugated polymers and fullerenes) have the potential to be fabricated by low cost printing methods allowing for large scale modules to be produced cheaply. Conventional organic solar cells function by generating charge from a singlet excited state. In order to achieve optimum performance the precise morphology of polymer and fullerene must be controlled which can be extremely challenging. These devices however, have attained good efficiencies (10%) but are hampered by severe loss mechanisms which generally involve the formation of a lower energy triplet excited state.

We propose to develop novel materials for organic solar cells which will instead utilise this triplet excited state to generate charges. This will enable us to not only eliminate this loss mechanism but due to the unique properties of the triplet excited state will allow for numerous benefits. Firstly, the long lifetime of the triplet excited state will be exploited to allow for a simpler organic solar cell where precise morphological control is not required. Secondly, the proposed new materials will allow for the utilisation of near-IR light which is typically wasted in ALL current solar cell devices. Thirdly, exploiting a unique photophysical process we will produce materials capable of delivering efficiencies in excess of the theoretical limit available to conventional solar cells. Thus we propose that utilisation of triplet excitons is the required step-change to allow for organic solar cells to achieve their ultimate efficiencies

 Publications

year authors and title journal last update
List of publications.
2019 Kealan J. Fallon, Peter Budden, Enrico Salvadori, Alex M. Ganose, Christopher N. Savory, Lissa Eyre, Simon Dowland, Qianxiang Ai, Stephen Goodlett, Chad Risko, David O. Scanlon, Christopher W. M. Kay, Akshay Rao, Richard H. Friend, Andrew J. Musser, Hugo Bronstein
Exploiting Excited-State Aromaticity To Design Highly Stable Singlet Fission Materials
published pages: 13867-13876, ISSN: 0002-7863, DOI: 10.1021/jacs.9b06346
Journal of the American Chemical Society 141/35 2020-01-20
2019 Daniel G. Congrave, Bluebell H. Drummond, Patrick J. Conaghan, Haydn Francis, Saul T. E. Jones, Clare P. Grey, Neil C. Greenham, Dan Credgington, Hugo Bronstein
A Simple Molecular Design Strategy for Delayed Fluorescence toward 1000 nm
published pages: 18390-18394, ISSN: 0002-7863, DOI: 10.1021/jacs.9b09323
Journal of the American Chemical Society 141/46 2020-01-20
2017 Kealan J. Fallon, Annikki Santala, Nilushi Wijeyasinghe, Eric F. Manley, Niall Goodeal, Anastasia Leventis, David M. E. Freeman, Mohammed Al-Hashimi, Lin X. Chen, Tobin J. Marks, Thomas D. Anthopoulos, Hugo Bronstein
Effect of Alkyl Chain Branching Point on 3D Crystallinity in High N-Type Mobility Indolonaphthyridine Polymers
published pages: 1704069, ISSN: 1616-301X, DOI: 10.1002/adfm.201704069
Advanced Functional Materials 27/43 2020-01-20
2017 Thomas Stahl, Robin Bofinger, Ivan Lam, Kealan J. Fallon, Peter Johnson, Olumide Ogunlade, Vessela Vassileva, R. Barbara Pedley, Paul C. Beard, Helen C. Hailes, Hugo Bronstein, Alethea B. Tabor
Tunable Semiconducting Polymer Nanoparticles with INDT-Based Conjugated Polymers for Photoacoustic Molecular Imaging
published pages: 1734-1740, ISSN: 1043-1802, DOI: 10.1021/acs.bioconjchem.7b00185
Bioconjugate Chemistry 28/6 2020-01-20
2017 YunHui L. Lin, Marius Koch, Alyssa N. Brigeman, David M. E. Freeman, Lianfeng Zhao, Hugo Bronstein, Noel C. Giebink, Gregory D. Scholes, Barry P. Rand
Enhanced sub-bandgap efficiency of a solid-state organic intermediate band solar cell using triplet–triplet annihilation
published pages: 1465-1475, ISSN: 1754-5692, DOI: 10.1039/c6ee03702j
Energy & Environmental Science 10/6 2020-01-20
2016 Michelle S. Vezie, Sheridan Few, Iain Meager, Galatia Pieridou, Bernhard Dörling, Raja Shahid Ashraf, Alejandro R. Goñi, Hugo Bronstein, Iain McCulloch, Sophia C. Hayes, Mariano Campoy-Quiles, Jenny Nelson
Exploring the origin of high optical absorption in conjugated polymers
published pages: 746-753, ISSN: 1476-1122, DOI: 10.1038/nmat4645
Nature Materials 15/7 2020-01-20
2018 Jordan Shaikh, David M. E. Freeman, Hugo Bronstein, Tracey M. Clarke
Energy-Transfer Pathways and Triplet Lifetime Manipulation in a Zinc Porphyrin/F8BT Hybrid Polymer
published pages: 23950-23958, ISSN: 1932-7447, DOI: 10.1021/acs.jpcc.8b07880
The Journal of Physical Chemistry C 122/42 2020-01-20
2018 Anastasia Leventis, Jeroen Royakkers, Alexandros G. Rapidis, Niall Goodeal, Merina K. Corpinot, Jarvist M. Frost, Dejan-Krešimir Bučar, Matthew Oliver Blunt, Franco Cacialli, Hugo Bronstein
Highly Luminescent Encapsulated Narrow Bandgap Polymers Based on Diketopyrrolopyrrole
published pages: 1622-1626, ISSN: 0002-7863, DOI: 10.1021/jacs.7b13447
Journal of the American Chemical Society 140/5 2020-01-20
2018 Daniel A. Warr, Luís M. A. Perdigão, Harry Pinfold, Jonathan Blohm, David Stringer, Anastasia Leventis, Hugo Bronstein, Alessandro Troisi, Giovanni Costantini
Sequencing conjugated polymers by eye
published pages: eaas9543, ISSN: 2375-2548, DOI: 10.1126/sciadv.aas9543
Science Advances 4/6 2020-01-20
2017 Enrico Salvadori, Nathaniel Luke, Jordan Shaikh, Anastasia Leventis, Hugo Bronstein, Christopher W. M. Kay, Tracey M. Clarke
Ultra-fast spin-mixing in a diketopyrrolopyrrole monomer/fullerene blend charge transfer state
published pages: 24335-24343, ISSN: 2050-7488, DOI: 10.1039/C7TA07381J
Journal of Materials Chemistry A 5/46 2020-01-20
2016 Kealan J. Fallon, Nilushi Wijeyasinghe, Eric F. Manley, Stoichko D. Dimitrov, Syeda A. Yousaf, Raja S. Ashraf, Warren Duffy, Anne A. Y. Guilbert, David M. E. Freeman, Mohammed Al-Hashimi, Jenny Nelson, James R. Durrant, Lin X. Chen, Iain McCulloch, Tobin J. Marks, Tracey M. Clarke, Thomas D. Anthopoulos, Hugo Bronstein
Indolo-naphthyridine-6,13-dione Thiophene Building Block for Conjugated Polymer Electronics: Molecular Origin of Ultrahigh n-Type Mobility
published pages: 8366-8378, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.6b03671
Chemistry of Materials 28/22 2020-01-20
2017 David M. E. Freeman, Andrew J. Musser, Jarvist M. Frost, Hannah L. Stern, Alexander K. Forster, Kealan J. Fallon, Alexandros G. Rapidis, Franco Cacialli, Iain McCulloch, Tracey M. Clarke, Richard H. Friend, Hugo Bronstein
Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet–Triplet Energy Gap
published pages: 11073-11080, ISSN: 0002-7863, DOI: 10.1021/jacs.7b03327
Journal of the American Chemical Society 139/32 2020-01-20

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CONTREX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CONTREX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

DEEPTIME (2020)

Probing the history of matter in deep time

Read More  

Mu-MASS (2019)

Muonium Laser Spectroscopy

Read More