Opendata, web and dolomites

TNS TERMINATED

Developing the Next Generation Framework for Testing Nonlinear Dynamic Structures.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "TNS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF BRISTOL 

Organization address
address: BEACON HOUSE QUEENS ROAD
city: BRISTOL
postcode: BS8 1QU
website: www.bristol.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.ludovicrenson.com
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-05-01   to  2018-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL UK (BRISTOL) coordinator 183˙454.00

Map

 Project objective

When designing new structures and devices, engineers are completely dependent on mathematical models to ensure that their designs function as intended. As technological boundaries are pushed to the limits, systems become nonlinear – the response of the system is no longer proportional to the input. These nonlinear systems can exhibit a wide range of complicated behaviour that is very difficult to predict and potentially disastrous. Take for example the F-117A Night Hawk stealth jet. Despite extensive modelling and design work, at an airshow in 1997 in Maryland, Essex, USA, it encountered a disastrous instability known as flutter. The aircraft was lost.

Until now there has been no general-purpose systematic method that can directly measure and characterise nonlinear dynamic behaviour during laboratory tests; hence it is extremely challenging to incorporate nonlinear features into the model development and validation process.

Control-based continuation (CBC) is a systematic method designed to fill this void in the nonlinear test and measurement field. Thought the method has already been demonstrated on several simple mechanical systems, it is still in its infancy and lacks robustness. The specific objectives of the research proposed here are to develop and incorporate in CBC effective and noise-robust algorithms and control strategies, hence leading to a solid and more general framework for testing nonlinear dynamic systems. The method will be demonstrated experimentally including on an aeroelastic rig that exhibits potentially dangerous flutter-induced limit cycle oscillations in a wind-tunnel.

 Publications

year authors and title journal last update
List of publications.
2017 L. Renson, D.A.W. Barton, S.A. Neild
Experimental Tracking of Limit-point Bifurcations and Backbone Curves Using Control-based Continuation
published pages: , ISSN: 0218-1274, DOI: 10.1142/S0218127417300026
International Journal of Bifurcation and Chaos Vol. 27, No. 1 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TNS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TNS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CONDISOBS (2020)

Contain, Distribute, Obstruct. Governing the Mobility of Asylum Seekers in the European Union

Read More  

MSOPGDM (2019)

Mechanistic studies of prokaryotic genome defense mechanisms

Read More  

EXPAND (2019)

Examining pan-neotropical diasporas

Read More