MEDENZYMEDESIGN

Enzyme Design of Medical Interest

 Coordinatore UNIVERSITAT DE GIRONA 

 Organization address address: PLACA SANT DOMENEC 9 EDIFICI LES ALIGUES
city: GIRONA
postcode: 17071

contact info
Titolo: Dr.
Nome: Montserrat
Cognome: Estopà
Email: send email
Telefono: -972419711
Fax: -972418862

 Nazionalità Coordinatore Spain [ES]
 Totale costo 223˙537 €
 EC contributo 223˙537 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-IOF
 Funding Scheme MC-IOF
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-10-01   -   2013-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAT DE GIRONA

 Organization address address: PLACA SANT DOMENEC 9 EDIFICI LES ALIGUES
city: GIRONA
postcode: 17071

contact info
Titolo: Dr.
Nome: Montserrat
Cognome: Estopà
Email: send email
Telefono: -972419711
Fax: -972418862

ES (GIRONA) coordinator 223˙537.90

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

efficient    enzyme    natural    active    drugs    industrial    pd    group    enzymes    alzheimer    catalysts    stress    oxidative    stable    disorders   

 Obiettivo del progetto (Objective)

'Enzymes are the most efficient, specific and selective catalysts known up to date. Despite the enzyme advantages, not all synthetic processes present a natural enzyme to catalyze and accelerate the reactions. Hence, the design of new stable enzymes for those processes where no biocatalyst is known represents a major challenge for protein engineering and a stringent test to understand how natural enzymes work. In addition to that, the ability of designing specific active enzymes is of great interest due to the potential applications in biotechnology, biomedicine and industrial processes. In this proposal, the design of three enzymes of biological/medical interest will be fulfilled. First, an enzyme to reverse the formation of Advanced Glycation End-Products (AGEs), mainly associated to diabetes-related disorders, but also to Alzheimer’s disease will be designed. Second, the design of an enzyme presenting Glucose-6-Phosphate Dehydrogenase (G6PD) activity will be pursued. The latter might avoid the oxidative stress induced by many drugs in G6PD-deficient persons. Finally, the third objective of this proposal is the design of an enzyme with superoxide dismutase activity to avoid the oxidative stress produced in most of neurodegenerative diseases (i.e. Alzheimer’s, Parkinson’s, Huntington’s disorders). All designs will be performed following the research methodology developed by the Prof. Houk group which was already successfully applied for the design of active Kemp elimination and retro-aldolase enzymes. However, new QM/MM-MD strategies and DFT functionals developed at the return host organization (IQC) will be introduced to improve some parts of the design process. The fellow researcher will have the chance to work on this pioneer project in a world leading research group and to transfer this knowledge to one of the best EU research institutes.'

Introduzione (Teaser)

Enzymes are efficient catalysts with high specificity and selectivity that are biodegradable and non-toxic and have enormous potential in sustainable industrial-scale production of many drugs. Limitations are the lack of stable natural enzymes and issues with scalability and cost.

Altri progetti dello stesso programma (FP7-PEOPLE)

SPINMET (2010)

Spin related phenomena in mesoscopic transport

Read More  

GS2DS (2010)

Systematic Analysis of Gene Synergies to Discover Drug Synergies

Read More  

CATSYNCAL (2014)

New Organocatalytic Malononitrile Michael Addition Methodology for the Enantioselective Synthesis of Calyciphylline K

Read More