Opendata, web and dolomites

cOMPoSe SIGNED

Optical Metamaterials by Polymer Self-assembly

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 cOMPoSe project word cloud

Explore the words cloud of the cOMPoSe project. It provides you a very rough idea of what is the project "cOMPoSe" about.

special    attracted    assembled    structures    nanometre    profound    techniques    dimensional    utilized    annealing    structured    realize    situ    materials    sub    metamaterials    infrared    interaction    scattering    waves    network    limited    sizes    optical    narrow    macroscopic    stems    visible    self    refraction    assembly    negative    refractive    composition    aren    ultimate    patterning    creation    structure    nature    replicating    light    networks    directions    material    cloaking    made    copolymers    significance    electromagnetic    insights    continuous    artificially    3d    rational    lithographic    fundamental    breaking    index    propagation    strategies    toward    microscopic    intended    block    technologically    found    empirical    fabricating    ground    alternative    characterization    potentially    truly    determined    operate    chemical    limitations    diffraction    lithography    spectrum    parts    copolymer    accessible    overcome    imaging    invisibility    experiments    frequencies    create    ing    fabrication    structural    exhibits    engineering   

Project "cOMPoSe" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE DE FRIBOURG 

Organization address
address: AVENUE DE L EUROPE 20
city: FRIBOURG
postcode: 1700
website: www.unifr.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Project website http://ami.swiss/physics-test/en/research/stories/project/
 Total cost 187˙419 €
 EC max contribution 187˙419 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2018-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE FRIBOURG CH (FRIBOURG) coordinator 187˙419.00

Map

 Project objective

Metamaterials are artificially structured materials whose interaction with electromagnetic waves is determined by their structure rather than by their chemical composition. The resulting material properties are not found in nature. Metamaterials that operate at optical frequencies, known as optical metamaterials, have attracted special attention due to their potentially ground-breaking technical applications such as sub-diffraction imaging or invisibility cloaking. The creation of optical metamaterials remains technologically challenging, as it requires fabricating nanometre scale features over macroscopic areas. Top-down lithographic techniques were utilized to create infrared metamaterials, and negative refraction was found in parts of the visible spectrum. However, state-of-the-art lithography is limited by the accessible feature sizes and often results in only microscopic patterning areas. Furthermore, these optical metamaterials aren’t truly three-dimensional (3D) as they are limited to a narrow range of light propagation directions.

This research project will investigate an alternative bottom-up approach toward the fabrication of 3D optical metamaterials by replicating continuous network structures of self-assembled block copolymers. The ultimate goal is to realize a material that exhibits a negative refractive index in the visible optical spectrum. Advanced in situ scattering techniques will be used to investigate the self-assembly of 3D network structures by means of well-controlled annealing experiments. This will provide important insights that will help to overcome the limitations of “self-assembled” optical metamaterials made by current empirical approaches. The significance of this research stems from the intended fundamental understanding of self-assembled 3D block copolymer networks based on in-situ structural characterization, which will have a profound impact on the rational design and engineering strategies of future 3D optical metamaterials.

 Publications

year authors and title journal last update
List of publications.
2017 Ansgar Sehlinger, Nikolai Bartnick, Ilja Gunkel, Michael A. R. Meier, Lucas Montero de Espinosa
Phase Segregation in Supramolecular Polymers Based on Telechelics Synthesized via Multicomponent Reactions
published pages: 1700302, ISSN: 1022-1352, DOI: 10.1002/macp.201700302
Macromolecular Chemistry and Physics 218/22 2019-06-13
2016 Saba, Matthias; Dehmel, Raphael; Gunkel, Ilja; Wilkinson, Timothy D.; Wilts, Bodo D.; Gu, Yibei; Steiner, Ullrich; Dolan, James A.; Wiesner, Ulrich; Hess, Ortwin; Baumberg, Jeremy J.
Gyroid Optical Metamaterials: Calculating the Effective Permittivity of Multidomain Samples
published pages: 1888–1896, ISSN: 2330-4022, DOI: 10.1021/acsphotonics.6b00400
ACS Photonics September 6, 2016 (Web) 2019-06-13
2017 Man Yan Eric Yau, Ilja Gunkel, Brigitte Hartmann-Azanza, Wajiha Akram, Yong Wang, Thomas Thurn-Albrecht, Martin Steinhart
Semicrystalline Block Copolymers in Rigid Confining Nanopores
published pages: 8637-8646, ISSN: 0024-9297, DOI: 10.1021/acs.macromol.7b01567
Macromolecules 50/21 2019-06-13
2017 Michael G. Fischer, Xiao Hua, Bodo D. Wilts, Ilja Gunkel, Thomas M. Bennett, Ullrich Steiner
Mesoporous Titania Microspheres with Highly Tunable Pores as an Anode Material for Lithium Ion Batteries
published pages: 22388-22397, ISSN: 1944-8244, DOI: 10.1021/acsami.7b03155
ACS Applied Materials & Interfaces 9/27 2019-06-13
2017 Raphael Dehmel, James A. Dolan, Yibei Gu, Ulrich Wiesner, Timothy D. Wilkinson, Jeremy J. Baumberg, Ullrich Steiner, Bodo D. Wilts, Ilja Gunkel
Optical Imaging of Large Gyroid Grains in Block Copolymer Templates by Confined Crystallization
published pages: 6255-6262, ISSN: 0024-9297, DOI: 10.1021/acs.macromol.7b01528
Macromolecules 50/16 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COMPOSE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COMPOSE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Cata-rotors (2019)

Visualising age- and cataract-related changed within cell membranes of human eye lens using molecular rotors

Read More  

PATH (2019)

Preservation and Adaptation in Turkish as a Heritage Language (PATH) - A Natural Language Laboratory in a Small Dutch Town

Read More  

TRACE-AD (2019)

Tracking the Effects of Amyloid and Tau Pathology on Brain Systems and Cognition in Early Alzheimer’s Disease

Read More