Explore the words cloud of the NeuroPsense project. It provides you a very rough idea of what is the project "NeuroPsense" about.
The following table provides information about the project.
Coordinator |
UNIVERSITAT ZURICH
Organization address contact info |
Coordinator Country | Switzerland [CH] |
Total cost | 150˙000 € |
EC max contribution | 150˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2015-PoC |
Funding Scheme | ERC-POC |
Starting year | 2016 |
Duration (year-month-day) | from 2016-06-01 to 2017-11-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITAT ZURICH | CH (Zürich) | coordinator | 32˙512.00 |
2 | INILABS AG | CH (ZURICH) | participant | 117˙487.00 |
Neuromorphic computing has demonstrated high potential for creating computing systems with order-of-magnitude improvements in energy efficiency and robustness to noisy or unreliable sensory signals, such as those inherent in vision. However, a significant roadblock to realizing the full potential of this emerging brain-inspired technology is the current practical need to use inefficient and slow (high latency) legacy von Neumann architectures to convert the input data that needs to be processed, and supply it to the neuromorphic system for further processing. A promising solution to this problem is the recent availability of state-of-the-art neuromorphic sensors, which produce asynchronous event-based output in a form for neuromorphic processing. In parallel, we have developed state-of-the-art neuromorphic processors in the ERC NeuroP project, opening the path to creating fully neuromorphic combined sensing and processing systems. Here we will demonstrate the potential of this technology by building a proof of concept Neuromorphic Sensory Processor (NSP), which will directly interface the neuromorphic Dynamic Vision Sensor with one of the neuromorphic processor devices developed in the ERC NeuroP project. This will represent the first ever general-purpose, end-to-end, fully neuromorphic vision sensing and processing system available for general usage. In this project we will build a technology demonstrator and a detailed commercial business case for this technology, and demonstrate both its technological and commercial advantages. Possible applications for the technology include ultra-high performance and ultra-low power visual processing in ambient surveillance, driver assistance, mobile/wearable devices and robotics.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEUROPSENSE" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "NEUROPSENSE" are provided by the European Opendata Portal: CORDIS opendata.
Just because we can, should we? An anthropological perspective on the initiation of technology dependence to sustain a child’s life
Read MoreUnderstanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell
Read MoreA need for speed: mechanisms to coordinate protein synthesis and folding in metazoans
Read More