Explore the words cloud of the bioSPINspired project. It provides you a very rough idea of what is the project "bioSPINspired" about.
The following table provides information about the project.
Coordinator |
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Organization address contact info |
Coordinator Country | France [FR] |
Project website | http://julie.grollier.free.fr/ |
Total cost | 1˙907˙767 € |
EC max contribution | 1˙907˙767 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2015-CoG |
Funding Scheme | ERC-COG |
Starting year | 2016 |
Duration (year-month-day) | from 2016-09-01 to 2021-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS | FR (PARIS) | coordinator | 1˙907˙767.00 |
In the bioSPINspired project, I propose to use my experience and skills in spintronics, non-linear dynamics and neuromorphic nanodevices to realize bio-inspired spin torque computing architectures. I will develop a bottom-up approach to build spintronic data processing systems that perform low power ‘cognitive’ tasks on-chip and could ultimately complement our traditional microprocessors. I will start by showing that spin torque nanodevices, which are multi-functional and tunable nonlinear dynamical nano-components, are capable of emulating both neurons and synapses. Then I will assemble these spin-torque nano-synapses and nano-neurons into modules that implement brain-inspired algorithms in hardware. The brain displays many features typical of non-linear dynamical networks, such as synchronization or chaotic behaviour. These observations have inspired a whole class of models that harness the power of complex non-linear dynamical networks for computing. Following such schemes, I will interconnect the spin torque nanodevices by electrical and magnetic interactions so that they can couple to each other, synchronize and display complex dynamics. Then I will demonstrate that when perturbed by external inputs, these spin torque networks can perform recognition tasks by converging to an attractor state, or use the separation properties at the edge of chaos to classify data. In the process, I will revisit these brain-inspired abstract models to adapt them to the constraints of hardware implementations. Finally I will investigate how the spin torque modules can be efficiently connected together with CMOS buffers to perform higher level computing tasks. The table-top prototypes, hardware-adapted computing models and large-scale simulations developed in bioSPINspired will lay the foundations of spin torque bio-inspired computing and open the path to the fabrication of fully integrated, ultra-dense and efficient CMOS/spin-torque nanodevice chips.
year | authors and title | journal | last update |
---|---|---|---|
2019 |
R. Matsumoto, S. Lequeux, H. Imamura, J. Grollier Chaos and Relaxation Oscillations in Spin-Torque Windmill Spiking Oscillators published pages: , ISSN: 2331-7019, DOI: 10.1103/PhysRevApplied.11.044093 |
Physical Review Applied 11/4 | 2019-11-28 |
2019 |
M. Riou, J. Torrejon, B. Garitaine, F. Abreu Araujo, P. Bortolotti, V. Cros, S. Tsunegi, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, D. Querlioz, M.D. Stiles, J. Grollier Temporal Pattern Recognition with Delayed-Feedback Spin-Torque Nano-Oscillators published pages: , ISSN: 2331-7019, DOI: 10.1103/PhysRevApplied.12.024049 |
Physical Review Applied 12/2 | 2019-11-28 |
2018 |
Miguel Romera, Philippe Talatchian, Sumito Tsunegi, Flavio Abreu Araujo, Vincent Cros, Paolo Bortolotti, Juan Trastoy, Kay Yakushiji, Akio Fukushima, Hitoshi Kubota, Shinji Yuasa, Maxence Ernoult, Damir Vodenicarevic, Tifenn Hirtzlin, Nicolas Locatelli, Damien Querlioz, Julie Grollier Vowel recognition with four coupled spin-torque nano-oscillators published pages: 230-234, ISSN: 0028-0836, DOI: 10.1038/s41586-018-0632-y |
Nature 563/7730 | 2019-05-22 |
2018 |
D. Pinna, F. Abreu Araujo, J.-V. Kim, V. Cros, D. Querlioz, P. Bessiere, J. Droulez, J. Grollier Skyrmion Gas Manipulation for Probabilistic Computing published pages: , ISSN: 2331-7019, DOI: 10.1103/PhysRevApplied.9.064018 |
Physical Review Applied 9/6 | 2019-05-22 |
2018 |
Alice Mizrahi, Julie Grollier, Damien Querlioz, M. D. Stiles Overcoming device unreliability with continuous learning in a population coding based computing system published pages: 152111, ISSN: 0021-8979, DOI: 10.1063/1.5042250 |
Journal of Applied Physics 124/15 | 2019-05-22 |
2019 |
D. Marković, N. Leroux, M. Riou, F. Abreu Araujo, J. Torrejon, D. Querlioz, A. Fukushima, S. Yuasa, J. Trastoy, P. Bortolotti, J. Grollier Reservoir computing with the frequency, phase, and amplitude of spin-torque nano-oscillators published pages: 12409, ISSN: 0003-6951, DOI: 10.1063/1.5079305 |
Applied Physics Letters 114/1 | 2019-05-22 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOSPINSPIRED" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "BIOSPINSPIRED" are provided by the European Opendata Portal: CORDIS opendata.