Opendata, web and dolomites

COSMOKEMS SIGNED

EXPERIMENTAL CONSTRAINTS ON THE ISOTOPE SIGNATURES OF THE EARLY SOLAR SYSTEM

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "COSMOKEMS" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 3˙106˙625 €
 EC max contribution 3˙106˙625 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-AdG
 Funding Scheme ERC-ADG
 Starting year 2016
 Duration (year-month-day) from 2016-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 2˙864˙125.00
2    THERMO FISHER SCIENTIFIC (BREMEN) GMBH DE (BREMEN) participant 242˙500.00

Map

 Project objective

This project aims at simulating the processes that took place in the early Solar System to determine how these processes shaped the chemical and isotope compositions of solids that accreted to ultimately form terrestrial planets. Planetary materials exhibit mass dependent and mass independent isotope signatures and their origin and relationships are not fully understood. This proposal will be based on new experiments reproducing the conditions of the solar nebula in its first few million years and on a newly designed Knudsen Effusion Mass Spectrometer (KEMS) that will be built for the purpose of this project. This project consists of three main subprojects: (1) we will simulate the effect of particle irradiation on solids to examine how isotopes can be fractionated by these processes to identify whether this can explain chemical variations in meteorites. We will examine whether particle irradiation can cause mass independent fractionation, (2) the novel KEMS instrument will be used to determine the equilibrium isotope fractionation associated with reactions between gas and condensed phases at high temperature. It will also be used to determine the kinetic isotope fractionation associated with evaporation and condensation of solids. This will provide new constraints on the thermodynamic conditions, T, P and fO2 during heating events that have modified the chemical composition of planetary materials. These constraints will also help identify the processes that cause the depletion in volatile elements and the fractionation in refractory elements observed in planetesimals and planets, (3) we will examine the effect of UV irradiation on chemical species in the vapour phase as an attempt to reproduce observed isotope compositions found in meteorites or their components. These results may radically change our view on how the protoplanetary disk evolved and how solids were transported and mixed.

 Publications

year authors and title journal last update
List of publications.
2019 Dmitry Ivanov, Bernard Bourdon
Numerical simulations of magnetic electron-impact ion source
published pages: 35-43, ISSN: 1387-3806, DOI: 10.1016/j.ijms.2019.05.005
International Journal of Mass Spectrometry 442 2020-01-29

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COSMOKEMS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COSMOKEMS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

Mu-MASS (2019)

Muonium Laser Spectroscopy

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More