Explore the words cloud of the Q-DIM-SIM project. It provides you a very rough idea of what is the project "Q-DIM-SIM" about.
The following table provides information about the project.
Coordinator |
THE HEBREW UNIVERSITY OF JERUSALEM
Organization address contact info |
Coordinator Country | Israel [IL] |
Project website | http://bargill.phys.huji.ac.il |
Total cost | 1˙500˙000 € |
EC max contribution | 1˙500˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2016-STG |
Funding Scheme | ERC-STG |
Starting year | 2017 |
Duration (year-month-day) | from 2017-01-01 to 2021-12-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | THE HEBREW UNIVERSITY OF JERUSALEM | IL (JERUSALEM) | coordinator | 1˙500˙000.00 |
Quantum interacting systems are at the forefront of contemporary physics, and pose challenges to our understanding of quantum phases, many-body dynamics, and a variety of condensed matter phenomena. Advances in quantum applications, including quantum computation and metrology, rely on interactions to create entanglement and to improve sensitivity beyond the standard quantum limit. In recent years tremendous effort has been invested in developing precision experimental tools to study and simulate complicated many-body Hamiltonians. So far, such tools have been mostly realized in cold atomic systems, trapped ions and photonic networks.
I propose a novel experimental approach using Nitrogen-Vacancy (NV) color centers in diamond, superconducting couplers, super-resolution addressing and cryogenic cooling, as a many-body quantum spin simulator. The NV center is a unique spin defect in a robust solid, with remarkable optical properties and a long electronic spin coherence lifetime (∼3 ms at room temperature). We have recently demonstrated that this coherence time can be extended to almost 1 second at low temperature, paving the way for interaction-dominated NV-based experiments.
The goal of this project is to develop a paradigm of atom-like spin defects in the solid-state as a platform for studying elaborate quantum many-body spin physics (e.g. the Haldane phase in 2D) and quantum information systems (e.g. one-way quantum computing). I intend to combine a low temperature environment with a novel optical super-resolution system and nanofabricated superconducting structures on the diamond surface to produce a unique experimental setup capable of achieving this goal. The ability to engineer and control interacting NV systems in the solid-state diamond lattice has far-reaching applications for studying fundamental problems in many-body physics and in quantum information science.
year | authors and title | journal | last update |
---|---|---|---|
2019 |
I. Meirzada, S. A. Wolf, A. Naiman, U. Levy, N. Bar-Gill Enhanced spin state readout of nitrogen-vacancy centers in diamond using infrared fluorescence published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.100.125436 |
Physical Review B 100/12 | 2020-02-13 |
2019 |
A. Pick, S. Silberstein, N. Moiseyev, N. Bar-Gill Robust mode conversion in NV centers using exceptional points published pages: , ISSN: 2643-1564, DOI: 10.1103/physrevresearch.1.013015 |
Physical Review Research 1/1 | 2020-02-13 |
2020 |
K. I. O. Ben \'Attar, D. Farfurnik, N. Bar-Gill Hamiltonian engineering of general two-body spin-1/2 interactions published pages: , ISSN: 2643-1564, DOI: 10.1103/physrevresearch.2.013061 |
Physical Review Research 2/1 | 2020-02-13 |
2017 |
D. Farfurnik, N. Alfasi, S. Masis, Y. Kauffmann, E. Farchi, Y. Romach, Y. Hovav, E. Buks, N. Bar-Gill Enhanced concentrations of nitrogen-vacancy centers in diamond through TEM irradiation published pages: 123101, ISSN: 0003-6951, DOI: 10.1063/1.4993257 |
Applied Physics Letters 111/12 | 2019-06-13 |
2018 |
Y. Hovav, B. Naydenov, F. Jelezko, N. Bar-Gill Low-Field Nuclear Polarization Using Nitrogen Vacancy Centers in Diamonds published pages: , ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.120.060405 |
Physical Review Letters 120/6 | 2019-06-13 |
2019 |
Y. Romach, A. Lazariev, I. Avrahami, F. Kleißler, S. Arroyo-Camejo, N. Bar-Gill Measuring Environmental Quantum Noise Exhibiting a Nonmonotonic Spectral Shape published pages: , ISSN: 2331-7019, DOI: 10.1103/physrevapplied.11.014064 |
Physical Review Applied 11/1 | 2019-09-05 |
2018 |
D. Farfurnik, Y. Horowicz, N. Bar-Gill Identifying and decoupling many-body interactions in spin ensembles in diamond published pages: , ISSN: 2469-9926, DOI: 10.1103/physreva.98.033409 |
Physical Review A 98/3 | 2019-09-05 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "Q-DIM-SIM" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "Q-DIM-SIM" are provided by the European Opendata Portal: CORDIS opendata.