Opendata, web and dolomites

CloudBrake SIGNED

How nature's smallest clouds slow down large-scale circulations critical for climate

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CloudBrake" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITEIT DELFT 

Organization address
address: STEVINWEG 1
city: DELFT
postcode: 2628 CN
website: www.tudelft.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙867˙120 €
 EC max contribution 1˙867˙120 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-01-01   to  2021-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT DELFT NL (DELFT) coordinator 1˙867˙120.00

Map

 Project objective

Do even the smallest clouds simply drift with the wind?

Vast areas of our oceans and land are covered with shallow cumulus clouds. These low-level clouds are receiving increased attention as uncertainties in their representation in global climate models lead to a spread in predictions of future climate. This attention emphasizes radiative and thermodynamic impacts of clouds, which are thought to energize the large-scale Hadley circulation. But broadly overlooked is the impact of shallow cumuli on the trade-winds that drive this circulation. Reasons for this negligence are a lack of observations of vertical wind structure and the wide range of scales involved.

My project will test the hypothesis that shallow cumuli can also slow down the Hadley circulation by vertical transport of momentum. First, observations of clouds and winds will be explicitly connected and the causality of their relationship will be exposed using ground-based and airborne measurements and high-resolution modeling. Second, new lidar techniques aboard aircraft are exploited to validate low-level winds measured by the space-borne Aeolus wind lidar and collect high-resolution wind and turbulence data. Third, different models of momentum transport by shallow convection will be developed to represent its impact on winds. Last, evidence of global relationships between winds and shallow cumulus are traced in Aeolus and additional satellite data and the impact of momentum transport on circulations in a control and warmer climate is tested in a general circulation model.

This project exploits my expertise in observing and modeling clouds and convection focused on a hypothesis which, if true, will strongly influence our understanding of the sensitivity of circulations and the sensitivity of climate. It will increase the predictability of low-level winds and convergence patterns, which are important to many disciplines, including climate studies, numerical weather prediction and wind-energy research.

 Publications

year authors and title journal last update
List of publications.
2019 Nuijens, L. and Siebesma, A.P.
Boundary Layer Clouds and Convection over Subtropical Oceans in our Current and in a Warmer Climate
published pages: , ISSN: 2198-6061, DOI: 10.1007/s40641-019-00126-x
Current Climate Change Reports 2019-10-15

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CLOUDBRAKE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CLOUDBRAKE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More  

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More