Opendata, web and dolomites

MULTIFLEXO SIGNED

Hierarchical multiscale modeling of flexoelectricity and related materials properties from first principles

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MULTIFLEXO project word cloud

Explore the words cloud of the MULTIFLEXO project. It provides you a very rough idea of what is the project "MULTIFLEXO" about.

delivering    gradient    obstacles    time    quantum    shape    levels    microscopic    multiferroics    treat    structure    flexoelectric    breaking    bulk    applicability    phenomena    questions    pressing    entails    periodicity    intriguing    calculations    science    fundamental    assessing    nanowires    morphologies    impressive    alternative    size    nanoscale    ground    polarization    cross    compositional    mechanisms    technologies    materials    critically    shapes    variety    experimental    direct    electronic    harnessing    theory    involve    inhomogeneous    modified    context    energy    boundary    hot    stringent    interpretations    lattice    practical    2d    gradients    substantial    emerged    translational    mechanical    physical    modern    multiscale    root    strain    principles    technological    deformation    crystals    semiconductor    cutting    exploring    material    interact    enabled    overcoming    limit    physics    functionalities    technically    flexoelectricity    governs    length    first    progress    relevance    supporting    electrical    breakdown    constraints    innovations    interpretation    coupling   

Project "MULTIFLEXO" data sheet

The following table provides information about the project.

Coordinator
AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS 

Organization address
address: CALLE SERRANO 117
city: MADRID
postcode: 28006
website: http://www.csic.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 1˙470˙000 €
 EC max contribution 1˙470˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS ES (MADRID) coordinator 1˙470˙000.00

Map

 Project objective

Flexoelectricity, the coupling between an inhomogeneous deformation and the electrical polarization, has emerged a “hot” topic in modern materials science due to its cross-cutting relevance to many phenomena of fundamental and technological interest. Understanding the intriguing physics that governs its behaviour at the nanoscale is crucial to harnessing the potential of strain gradients in practical applications, and such a progress requires a substantial support from theory. In spite of impressive recent advances, first-principles calculations of flexoelectricity remain technically challenging at several levels: first, the breakdown of translational lattice periodicity that a strain gradient entails is problematic to treat in the context of traditional electronic-structure methods; second, the stringent length- and time-scale constraints of direct quantum-mechanical approaches limit the applicability of these methods to real problems, which often involve complex sample shapes and morphologies. This project is aimed at overcoming these obstacles from their very root, via the development of ground-breaking innovations in electronic-structure and multiscale methodologies, and at using these advances to address a number of pressing physical questions in the context of energy and information technologies. In particular, the objectives of this project are: (i) identifying the microscopic mechanisms that are most effective at delivering a strong flexoelectric response in a variety of materials; (ii) understanding how these bulk effects are modified by size, shape and boundary conditions, and how they interact with other material properties; (iii) supporting the experimental interpretation by critically assessing alternative physical interpretations of the observed effects (e.g. compositional gradients); (iv) exploring the functionalities enabled by strain gradients in complex materials systems, including 2D crystals, semiconductor nanowires and multiferroics.

 Publications

year authors and title journal last update
List of publications.
2019 Miquel Royo, Massimiliano Stengel
First-Principles Theory of Spatial Dispersion: Dynamical Quadrupoles and Flexoelectricity
published pages: , ISSN: 2160-3308, DOI: 10.1103/PhysRevX.9.021050
Physical Review X 9/2 2020-01-30
2019 Javier Junquera, Pablo García-Fernández, Massimiliano Stengel
Mechanisms to enhance the capacitance beyond the classical limits in capacitors with free-electron-like electrodes
published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.99.235127
Physical Review B 99/23 2020-01-30
2019 Andrea Schiaffino, Cyrus E. Dreyer, David Vanderbilt, Massimiliano Stengel
Metric wave approach to flexoelectricity within density functional perturbation theory
published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.99.085107
Physical Review B 99/8 2020-01-30
2019 J. Schaab, K. Shapovalov, P. Schoenherr, J. Hackl, M. I. Khan, M. Hentschel, Z. Yan, E. Bourret, C. M. Schneider, S. Nemsák, M. Stengel, A. Cano, D. Meier
Electrostatic potential mapping at ferroelectric domain walls by low-temperature photoemission electron microscopy
published pages: 122903, ISSN: 0003-6951, DOI: 10.1063/1.5117881
Applied Physics Letters 115/12 2020-01-30
2019 Peggy Schoenherr, Konstantin Shapovalov, Jakob Schaab, Zewu Yan, Edith D. Bourret, Mario Hentschel, Massimiliano Stengel, Manfred Fiebig, Andrés Cano, Dennis Meier
Observation of Uncompensated Bound Charges at Improper Ferroelectric Domain Walls
published pages: 1659-1664, ISSN: 1530-6984, DOI: 10.1021/acs.nanolett.8b04608
Nano Letters 19/3 2020-01-30
2018 Blai Casals, Andrea Schiaffino, Arianna Casiraghi, Sampo J. Hämäläinen, Diego López González, Sebastiaan van Dijken, Massimiliano Stengel, Gervasi Herranz
Low-Temperature Dielectric Anisotropy Driven by an Antiferroelectric Mode in SrTiO 3
published pages: , ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.120.217601
Physical Review Letters 120/21 2019-05-15
2017 Andrea Schiaffino, Massimiliano Stengel
Macroscopic Polarization from Antiferrodistortive Cycloids in Ferroelastic SrTiO 3
published pages: , ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.119.137601
Physical Review Letters 119/13 2019-05-15
2018 Massimiliano Stengel, David Vanderbilt
Quantum theory of mechanical deformations
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.98.125133
Physical Review B 98/12 2019-05-15
2018 Cyrus E. Dreyer, Massimiliano Stengel, David Vanderbilt
Current-density implementation for calculating flexoelectric coefficients
published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.98.075153
Physical Review B 98/7 2019-05-15

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MULTIFLEXO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MULTIFLEXO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Regen-membrane (2019)

Pulsed Electrophoretic Deposition to give Membranes for Regenerative Medicine

Read More  

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

CITISENSE (2019)

Evolving communication systems in response to altered sensory environments

Read More