Explore the words cloud of the DENOCS project. It provides you a very rough idea of what is the project "DENOCS" about.
The following table provides information about the project.
Coordinator |
KOBENHAVNS UNIVERSITET
Organization address contact info |
Coordinator Country | Denmark [DK] |
Total cost | 212˙194 € |
EC max contribution | 212˙194 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2016 |
Funding Scheme | MSCA-IF-EF-CAR |
Starting year | 2017 |
Duration (year-month-day) | from 2017-06-01 to 2019-07-01 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | KOBENHAVNS UNIVERSITET | DK (KOBENHAVN) | coordinator | 212˙194.00 |
Global climate changes affect coral reefs worldwide and these valuable marine biodiversity hotspots are increasingly experiencing a symbiotic dysfunction known as coral bleaching, where the global bleaching events in 2016 are the most significant to date. The underlying physiological mechanisms inducing the bleaching response remain unclear. It is known that cellular oxidative stress and reactive species such as nitric oxide (NO) and hydrogen peroxide (H2O2) are involved, but the sources and sinks of these compounds, their interplay and spatio-temporal dynamics have not been investigated in corals, partly due to lack of suitable experimental tools. The DENOCS projects will apply a suite of novel quantitative assessment techniques to investigate the dynamics and impact sites of NO and H2O2 in intact corals, coral tissue culture, and isolated photosymbionts when subjected to experimental treatments mimicking global change-induced environmental stress scenarios. This will encompass expert training of Dr. Schrameyer in the use of novel microsensors for NO and H2O2 in combination with advanced bioimaging of the oxidative and nitrosative stress response in corals, variable chlorophyll fluorescence imaging and cellular 14C-fixation assays to assess symbiont photosynthesis. Prospective outcomes of DENOCS include a better understanding of oxidative and nitrosative stress responses in corals, quantification of threshold concentrations and impact sites of reactive oxygen and nitrogen species, and how these are involved in the coral bleaching response. The project DENOCS will promote EU’s research and innovation excellence through its interdisciplinary measurement approach and international collaboration, and will enable the restart of a promising career of Dr. Schrameyer after a maternity break.
year | authors and title | journal | last update |
---|---|---|---|
2018 |
Maria Moßhammer, Verena Schrameyer, Peter Ø. Jensen, Klaus Koren, Michael Kühl Extracellular hydrogen peroxide measurements using a flow injection system in combination with microdialysis probes – Potential and challenges published pages: 111-123, ISSN: 0891-5849, DOI: 10.1016/j.freeradbiomed.2018.05.089 |
Free Radical Biology and Medicine 128 | 2019-08-30 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DENOCS" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "DENOCS" are provided by the European Opendata Portal: CORDIS opendata.