Opendata, web and dolomites

SpliceCore

Functional dissection of core spliceosomal mutations causing Retinitis Pigmentosa.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SpliceCore" data sheet

The following table provides information about the project.

Coordinator
FUNDACIO CENTRE DE REGULACIO GENOMICA 

Organization address
address: CARRER DOCTOR AIGUADER 88
city: BARCELONA
postcode: 8003
website: www.crg.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 158˙121 €
 EC max contribution 158˙121 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2019-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACIO CENTRE DE REGULACIO GENOMICA ES (BARCELONA) coordinator 158˙121.00

Map

 Project objective

More than 95% of human genes undergo pre-mRNA splicing, and alternative splicing of mRNA precursors represents a prevalent mode of gene regulation. Errors in this process are often the origin of of disorders. Most of splicing-related diseases are caused by perturbation in pre-mRNA transcripts which lead to their aberrant processing. Interestingly, a fraction of mutations affecting directly splicing factors, including core spliceosomal components, has been linked to a group of pathologies. Particularly intriguing are variants of the key spliceosomal subcomplex U4/5/6 tri-snRNP, associated with Retinitis Pigmentosa. Why these mutations lead to highly tissue-specific phenotypes, rather than general toxicity cause by a global block in splicing, remain unexplained. The proposed research aims to increase our understanding of the molecular mechanisms underlying the effects of these mutations and shed light on the basis of the disease. To functionally dissect these variants, I will combine spliceosomal network approaches (I) with genome-wide transcriptome analysis (II) and detailed biochemical and structural studies (III). Mechanistic insights derived from these analyses will help to identify transcripts that are predominantly sensitive to these mutations and that could be behind their pathogenic effects (IV). This work will allow us to better understand the function of key splicing factors, as well as the basis for their effects on splice site selection and their contributions to Retinitis Pigmentosa pathology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPLICECORE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SPLICECORE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CONDISOBS (2020)

Contain, Distribute, Obstruct. Governing the Mobility of Asylum Seekers in the European Union

Read More  

RAMBEA (2019)

Realistic Assessment of Historical Masonry Bridges under Extreme Environmental Actions

Read More  

ActinSensor (2019)

Identification and characterization of a novel damage sensor for cytoskeletal proteins in Drosophila

Read More