Opendata, web and dolomites

sharpEDGE SIGNED

From Bulk to Edge: Realization and Characterization of Fractionalized Quantum Matter

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "sharpEDGE" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITAET MUENCHEN 

Organization address
address: Arcisstrasse 21
city: MUENCHEN
postcode: 80333
website: www.tu-muenchen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 239˙860 €
 EC max contribution 239˙860 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-GF
 Starting year 2017
 Duration (year-month-day) from 2017-10-01   to  2020-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAET MUENCHEN DE (MUENCHEN) coordinator 239˙860.00
2    MASSACHUSETTS INSTITUTE OF TECHNOLOGY US (CAMBRIDGE) partner 0.00

Map

 Project objective

Most phases of matter can be understood using the concept of symmetry breaking. For example, the organization of water molecules in an ice crystal breaks the continuous translational symmetries that are preserved in liquid water. The discovery of the quantum Hall effect triggered a revolution of this concept. It was the first example of topological order, a type of order that cannot be detected with any local measurement and supports exciting new properties. A striking example is the universal transport properties which are so robust that metrologists use them to define the quantum of conductance. Additionally, exotic particles with fractionalized quantum numbers called anyons may emerge as collective excitations of these systems and could provide a route to fault-tolerant quantum computing. Despite the increasingly good theoretical understanding of fractionalized phases, there is a strong need to relate the theories to experimentally relevant models.

sharpEDGE will build new bridges between the effective and microscopic descriptions of fractionalized phases of matter. This requires us to solve a cumbersome quantum many-body problem. Numerical methods are essential here: they have accompanied the progress of the field since its early days, and the most recent developments give hope to solve some long-standing issues. We will thus apply a multidisciplinary approach combining the latest advances in topological quantum field theory, quantum information, and material science. Fractionalization may occur in gapped systems such as the fractional quantum Hall effect, lattice topological insulators or frustrated magnets, but also in exotic metallic phases. In this context, we will explore the microscopic relation between the edge and the bulk of gapped topological phases, and develop new characterization tools for gapless phases.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SHARPEDGE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SHARPEDGE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

MIRAGE (2019)

Measuring Interstellar Reactions of Aromatics by Gas-phase Experiments

Read More  

LYSOKIN (2020)

Architecture and regulation of PI3KC2β lipid kinase complex for nutrient signaling at the lysosome

Read More