Opendata, web and dolomites

INoVA SIGNED

Geochemical Controls on the Ice Nucleating Efficiency of Volcanic Ash

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "INoVA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LEEDS 

Organization address
address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT
website: www.leeds.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-01-22   to  2020-01-21

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 183˙454.00

Map

 Project objective

Ice formation in the atmosphere has a major impact on the properties and lifetime of clouds yet is one of the least well understood processes indirectly affecting the Earth’s climate. Heterogeneous ice nucleation by airborne solid particles (‘ice nuclei’) exerts a profound influence on clouds by raising the temperature at which ice can form relative to by homogeneous freezing of supercooled water droplets. Volcanic ash from explosive eruptions is increasingly recognised to be capable of acting as ice nuclei but factors determining the ash ice nucleating efficiency have yet to be elucidated. As for mineral dust from arid and semi-arid regions, physicochemical properties of the solid particles such as crystallinity, mineralogy and composition likely play a role in their ice nucleating efficiency, but this remains poorly understood and has not been systematically investigated for volcanic ash. In addition, the influence of thermochemical processes/conditions in the source magma, in the eruption plume and cloud, and in the ambient atmosphere on ash ice nucleating efficiency is not known. The proposed research will address this gap in knowledge through an experimental approach uniquely bridging volcanic geochemistry and atmospheric science, to establish the link between ash ice nucleating efficiency and its physicochemical properties and magmatic, eruptive and atmospheric history. A range of natural ash and synthetic ash, generated and treated under controlled laboratory conditions, will be studied. Experimental data will be parameterised for use in model simulations to predict regional ice nuclei concentrations based on an Icelandic eruption scenario. Collectively, the proposed research, training and knowledge transfer activities will enhance the future prospects of both the Fellow and host, while contributing to the greater benefit of society by improving understanding of the potential impacts of ash emissions from explosive eruptions on the atmosphere and on climate.

 Publications

year authors and title journal last update
List of publications.
2019 Elena C. Maters, Donald B. Dingwell, Corrado Cimarelli, Dirk Müller, Thomas F. Whale, Benjamin J. Murray
The importance of crystalline phases in ice nucleation by volcanic ash
published pages: 5451-5465, ISSN: 1680-7324, DOI: 10.5194/acp-19-5451-2019
Atmospheric Chemistry and Physics 19/8 2020-02-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "INOVA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "INOVA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ACES (2019)

Antarctic Cyclones: Expression in Sea Ice

Read More  

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More  

PROSPER (2019)

Politics of Rulemaking, Orchestration of Standards, and Private Economic Regulations

Read More