Opendata, web and dolomites

YEFF SIGNED

Comprehensive analysis of yeast expression-fitness functions (EFFs)

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "YEFF" data sheet

The following table provides information about the project.

Coordinator
FUNDACIO CENTRE DE REGULACIO GENOMICA 

Organization address
address: CARRER DOCTOR AIGUADER 88
city: BARCELONA
postcode: 8003
website: www.crg.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 170˙121 €
 EC max contribution 170˙121 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2020-05-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACIO CENTRE DE REGULACIO GENOMICA ES (BARCELONA) coordinator 170˙121.00

Map

 Project objective

Cellular and developmental processes rely on the precise activity of the proteins that constitute them, and alteration of protein activity often causes disease phenotypes and fitness defects. The relation between protein activity (or expression) and organismal fitness is thus a fundamental genetic property with implications for evolutionary and disease processes. However, a systematic understanding of how protein expression relates to fitness is lacking.

Here we propose a comprehensive screen of expression-fitness functions (EFFs) for yeast genes.

The proposed inter-disciplinary project will combine cutting-edge methods from synthetic biology, innovative one-step construction of a comprehensive genome-wide library, multiplexed genomics measurements and functional genomics computational analyses to elucidate fundamental patterns of expression-fitness functions.

The methodology is based on an inducible degron system that allows for controlled repression of protein levels. Due to a one-fits-all design, the inducible degron can be fused in a one-step transformation procedure to any gene contained in the yeast GFP-fusion library. An all-in-one construction of the library, assessment of library components via deep-sequencing and multiplexed growth and expression assays will allow for the measurement of thousands of yeast gene EFFs in parallel.

Computational data analyses will elucidate principal classes of EFFs. Subsequent functional genomics analyses will link principal EFFs to underlying molecular and physiological properties, such as gene’s functions, pathways or cellular localizations, which will therefore provide a foundation to understand the principal causes of how alterations in gene activity translate to impairments of cellular function.

The proposed project will therefore open up a new area of systematic, quantitative genetic analysis that should prove crucial in the understanding of human genetic variation and disease.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "YEFF" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "YEFF" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

Cata-rotors (2019)

Visualising age- and cataract-related changed within cell membranes of human eye lens using molecular rotors

Read More