Opendata, web and dolomites

Anti-CRISPR SIGNED

Uncovering viral sabotage of host CRISPR-Cas immune systems

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "Anti-CRISPR" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITEIT DELFT 

Organization address
address: STEVINWEG 1
city: DELFT
postcode: 2628 CN
website: www.tudelft.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 177˙598 €
 EC max contribution 177˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-01-15   to  2020-01-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT DELFT NL (DELFT) coordinator 177˙598.00

Map

 Project objective

CRISPR-Cas immune system represents one of the most effective weapons against mobile genetic elements in the host defense arsenal. Bacteriophages (phages) armed with anti-CRISPR proteins can, however, inhibit CRISPR immunity by sabotaging components of the immune system with evolutionary advantages. This proposal sets out to discover novel phage-encoded anti-CRISPR proteins and understand the molecular mechanisms of the inhibitory processes. I will focus on novel anti-CRISPR proteins for Cas9-containing type II CRISPR-Cas systems in lactic acid bacteria (LAB). I expect anti-CRISPR proteins to be present in phages for LAB, for which the CRISPR system is an important line of defense. It is highly plausible that LAB-infecting phages have evolved to possess anti-CRISPR proteins. However, none of anti-CRISPR proteins against type II CRISPR have been described so far. To identify novel type II anti-CRISPR proteins encoded by phage genomes and explore novel features of the anti-CRISPR proteins, I will establish high-throughput screening methods using an integrated approach consisting of metagenomics, bioinformatics and mass spectrometry. After identifying candidate anti-CRISPR proteins, I will uncover the underlying molecular mechanisms of these viral anti-CRISPR proteins utilizing state-of-the-art single-molecule fluorescence methodologies. The fierce virus–host arms race has resulted in high diversity of distinct prokaryotic CRISPR-Cas systems. Therefore, I anticipate that my high-throughput screening will lead to discovery of remarkably diverse anti-CRISPR proteins, specifically anti-CRISPR variants targeting Cas9. The proposed combination of viral diversity screening and single-molecule approaches will reveal novel mechanisms of anti-CRISPR activity that are difficult to obtain by traditional biochemistry, will impact potential applications of Cas9, and will provide unique insights into the host-virus arms race.

 Publications

year authors and title journal last update
List of publications.
2020 Sungchul Kim, Luuk Loeff, Sabina Colombo, Slobodan Jergic, Stan J. J. Brouns, Chirlmin Joo
Selective loading and processing of prespacers for precise CRISPR adaptation
published pages: 141-145, ISSN: 0028-0836, DOI: 10.1038/s41586-020-2018-1
Nature 579/7797 2020-03-24

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ANTI-CRISPR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ANTI-CRISPR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ActinSensor (2019)

Identification and characterization of a novel damage sensor for cytoskeletal proteins in Drosophila

Read More  

MSOPGDM (2019)

Mechanistic studies of prokaryotic genome defense mechanisms

Read More  

CINEMA (2019)

Creating an Infrastructure for the Numerical Exploration of Metallurgical Alloys

Read More