Opendata, web and dolomites

V-ChiralSpin SIGNED

Voltage Control of Chiral Spin Structures

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "V-ChiralSpin" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LEEDS 

Organization address
address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT
website: www.leeds.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 269˙857 €
 EC max contribution 269˙857 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-GF
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2021-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 269˙857.00
2    THE REGENTS OF THE UNIVERSITY OF CALIFORNIA US (OAKLAND CA) partner 0.00

Map

 Project objective

This project will develop a new way to manipulate chiral spin structures such as skyrmions using voltages. Building on the expertise of the fellow in voltage control of magnetism in multiferroic heterostructures, this project uses the unique Spin-Polarised Low Energy Electron Microscope (SPLEEM, in Berkeley) to characterize chiral spin structures in tailored multiferroic heterostructures. By studying (in Leeds) the effects of voltage control on current-driven skyrmion motion in these heterostructures, V-ChiralSpin aims to establish a new, technologically relevant, research area. Representing digital data with magnetic skyrmions offers a promising route to reduce the vast energy consumption and carbon footprint associated with current information technologies. Skyrmion sizes can be in the nanometre range and controlling them with voltage will reduce or eliminate the need for power-hungry electric currents or magnetic fields. The approach will be to manipulate chiral spin textures in tailored epitaxial multilayers via interfacial strain transfer from ferroelectric and piezoelectric substrates. The mechanisms coupling micromagnetic phenomena to voltage signals will be determined through SPLEEM imaging, micromagnetic simulation, and current-driven transport measurements as a function of voltage-controlled strain. Beyond transport properties, we will explore the use of voltage signals to write and delete skyrmions and other spin textures. The fellow will become an expert in the technique of SPLEEM, in the field of chiral spin structures, and in magneto-transport measurements. This fellowship will build and strengthen networks of researchers that will benefit both the fellow and the team members in the hosts. Leeds will benefit from knowledge transfer through the fellow of expertise in SPLEEM and chiral spin structures. Both Berkeley and Leeds will profit from the Fellow’s knowledge of electric field control of magnetism and expertise in micromagnetic simulations.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "V-CHIRALSPIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "V-CHIRALSPIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PATH (2019)

Preservation and Adaptation in Turkish as a Heritage Language (PATH) - A Natural Language Laboratory in a Small Dutch Town

Read More  

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More