Explore the words cloud of the Neuronal MRI project. It provides you a very rough idea of what is the project "Neuronal MRI" about.
The following table provides information about the project.
Coordinator |
FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Organization address contact info |
Coordinator Country | Portugal [PT] |
Project website | https://shemeshlab.org/research/ |
Total cost | 148˙635 € |
EC max contribution | 148˙635 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2016 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2017 |
Duration (year-month-day) | from 2017-05-01 to 2019-08-28 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD | PT (LISBOA) | coordinator | 148˙635.00 |
Functional MRI (fMRI) is currently the leading noninvasive modality to assess brain function in vivo. However, it relies on a surrogate marker for neural activity –the hemodynamic responses following activity– which makes fMRI nonspecific and difficult to interpret. Here, we propose to advance the state-of-the-art by developing and evaluating a methodology we term neuronal fMRI (nMRI) which would enable a direct measurement of neuronal activity and its fast dynamics. Achieving this arduous goal calls for a truly interdisciplinary effort, borrowing concepts from Chemistry (Chemical Exchange Saturation Transfer (CEST) of a neuronal-selective metabolite to impart specificity, restricted diffusion to probe cell sizes), Physics and Engineering (advanced MRI and reconstruction methods). Our general approach consists of a development-validation-application design, thus our main objectives are: 1. Harnessing the hitherto unexplored downfield resonance of N-Acetylaspartate (NAA) –a metabolite confined solely to neurons– in CEST MRI experiments, thus imparting specificity towards the neuronal population; combining this specificity enhancement with diffusion MRI sequences that are extraordinarily sensitive to cellular sizes, and hence are able to sense subtle cell-swellings arising upon neuronal firing. This new method, which we term neuronal-MRI (nMRI) will thus report on neuronal swellings, and as such reflect activity directly. 2. Implementing ultra-fast imaging techniques based on data multiplexing and the latest compressed sensing frameworks to nMRI, such that the 50 ms timescale can be reached with full brain coverage. This will allow the measurement of fast neuronal activity dynamics in the brain. 3. Applying nMRI to study the auditory circuit as a model system in-vivo. In summary, we posit that nMRI –upon successful implementation and rigorous testing– will be highly impactful in many disciplines, and pave the way to study the neuronal population in health and disease.
year | authors and title | journal | last update |
---|---|---|---|
2018 |
Guilherme Blazquez Freches, Cristina Chavarrias, Noam Shemesh BOLD-fMRI in the mouse auditory pathway published pages: 265-277, ISSN: 1053-8119, DOI: 10.1016/j.neuroimage.2017.10.027 |
NeuroImage 165 | 2020-02-25 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEURONAL MRI" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "NEURONAL MRI" are provided by the European Opendata Portal: CORDIS opendata.