Opendata, web and dolomites

COMNFT SIGNED

Communication Using the Nonlinear Fourier Transform

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "COMNFT" data sheet

The following table provides information about the project.

Coordinator
INSTITUT MINES-TELECOM 

Organization address
address: 19 PLACE MARGUERITE PEREY
city: PALAISEAU
postcode: 91120
website: www.institut-telecom.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙499˙180 €
 EC max contribution 1˙499˙180 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2024-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT MINES-TELECOM FR (PALAISEAU) coordinator 1˙499˙180.00

Map

 Project objective

High-speed optical fiber networks form the backbone of the information and communication technologies, including the Internet. More than 99% of the Internet data traffic is carried by a network of global optical fibers. Despite their great importance, today's optical fiber networks face a looming capacity crunch: The achievable rates of all current technologies characteristically vanish at high input powers due to distortions that arise from fiber nonlinearity. The solution of this long-standing complex problem has become the holy grail of the field of the optical communication.

The aim of this project is to develop a novel foundation for optical fiber communication based on the nonlinear Fourier transform (NFT). The NFT decorrelates signal degrees-of-freedom in optical fiber, in much the same way that the conventional Fourier transform does for linear systems. My collaborators and I have recently proposed nonlinear frequency-division multiplexing (NFDM) based on the NFT, in which the information is encoded in the generalized frequencies and their spectral amplitudes (similar to orthogonal frequency-division multiplexing). Since distortions such as inter-symbol and inter-channel interference are absent in NFDM, it achieves data rates higher than conventional methods. The objective of this proposal is to advance NFDM to the extent that it can be built in practical large-scale systems, thereby overcoming the limitation that fiber nonlinearity sets on the transmission rate of the communication networks. The proposed research relies on novel methodology and spans all aspects of the NFDM system design, including determining the fundamental information-theoretic limits, design of the NFDM transmitter and receiver, algorithms and implementations.

The feasibility of the project is manifest in preliminary proof-of-concepts in small examples and toy models, PI's leadership and track-record in the field, as well as the ideal research environment.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COMNFT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COMNFT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MajoranasAreReal (2019)

Search for mechanisms to control chiral Majorana modes in superconductors

Read More  

MOCHA (2019)

Understanding and leveraging ‘moments of change’ for pro-environmental behaviour shifts

Read More  

Growth regulation (2019)

The wide-spread bacterial toxin delivery systems and their role in multicellularity

Read More