As the impact of global warming becomes increasingly clear, the environmental impact of conventional fossil-fueled vehicles is undergoing close scrutiny by authorities and the public; correspondingly electric vehicles and electrified transportation are emerging as the only sustainable alternative to preserving the environment and guaranteeing the mobility needs of the future. Although the switch from conventional to EV represents a major challenge for the automotive industry, with significant obstacles still to be overcome, it also represents a major market and employment opportunity for all the supply chain. Specifically, before their mass deployment can become a reality, it is crucial to guarantee that the real operational performance, safety, reliability, durability and affordability of EVs attain at least the same level as conventional vehicles. Current, state-of-the-art EVs do not reach these targets due to limited technical maturity of key components (eg batteries) and limited available know-how and tools, also in the area of testing and simulation. Today industrial R&D must focus on bringing new, improved mass-production compliant vehicles to the market rapidly, implementing advanced components and architectures for higher operational efficiency: In this context, the OBELICS project address the urgent need for new tools to enable the multi-level modelling and testing of EV and their components in order to deliver more efficient vehicle designs faster while supporting modularity to enable mass production and hence improved affordability. OBELICS aims for a step change in the performance (target: 20%, i.e. from 100 Wh/kg to 120 Wh/kg), efficiency (target: 20%), safety (target: factor 10) and lifetime (target: 30%, i.e. from 100,000 km/8 years to 130,000 km years/11 years) of e-drivetrains and the development time (target: - 40%, i.e. from 5 years to 3 years) and efforts (target: -50%, i.e. from 100 fte and 30 million euro to 50 fte and 15 million euro).
Deliverables
List of deliverables.
Project website including Project templates
Documents, reports
2020-01-28 16:29:23
Optimization of OBELICS test procedures
Documents, reports
2020-01-28 16:29:23
Evaluation of international standards for lithium-ion batteries
Klemen ZeliÄ, Igor Mele, Ivo PaÄnik, Jože MoÅ¡kon, Miran GaberÅ¡Äek, Tomaž KatraÅ¡nik Revealing the Thermodynamic Background of the Memory Effect in Phase Separating Cathode Materials published pages: 690-700, ISSN: 0039-2480, DOI: 10.5545/sv-jme.2019.6366
Strojniški vestnik – Journal of Mechanical Engineering 65/11-12
2020-01-28
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OBELICS" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "OBELICS" are provided by the European Opendata Portal: CORDIS opendata.
More projects from the same programme (H2020-EU.3.4.)
ALTERNATE (2020)
ASSESSMENT ON ALTERNATIVE AVIATION FUELS DEVELOPMENT