Opendata, web and dolomites

CylcoRu4PACT TERMINATED

Cyclometallated ruthenium complexes for photo-activated chemotherapy

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CylcoRu4PACT project word cloud

Explore the words cloud of the CylcoRu4PACT project. It provides you a very rough idea of what is the project "CylcoRu4PACT" about.

ruthenium    minimizing    model    determined    cell    efficient    modifies    biological    cytotoxicity    efficacy    photodynamic    wavelengths    concentration    grounds    occurring    photoreactivity    wavelength    ligand    synthesize    tumours    overcome    sensitive    optimally    irradiation    cyclometallation    phototherapy    compounds    synthesized    metal    bond    patient    complexes    prodrugs    photosubstitution    anticancer    hypoxic    chemotherapy    visible    fails    groups    penetrates    hindering    shift    alternative    polypyridyl    sterically    red    treatments    usually    lines    curing    stand    hard    photochemical    cyclometallated    place    carbon    recover    locally    released    human    chemotherapeutic    therapy    cancer    energy    light    vitro    consist    measured    tissues    reactions    absorption    window    toxicity    tumour    introduce    clinic    oxygen    maximizing    quenches    dark    photochemotherapeutic    treatment    too    containing    compound    excited    concentrations    keeping    limit   

Project "CylcoRu4PACT" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT LEIDEN 

Organization address
address: RAPENBURG 70
city: LEIDEN
postcode: 2311 EZ
website: www.universiteitleiden.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website https://www.universiteitleiden.nl/en/staffmembers/sylvestre-bonnet
 Total cost 165˙598 €
 EC max contribution 165˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2020-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT LEIDEN NL (LEIDEN) coordinator 165˙598.00

Map

 Project objective

Chemotherapy is efficient in curing cancer, but most treatments are very hard to stand for the patient, and side effects limit treatment efficacy. Phototherapy is a promising alternative, where the toxicity of a light-sensitive chemotherapeutic compound is locally released upon visible light irradiation of the compound-containing tumour. Photodynamic therapy is already available in the clinic for oxygen-rich tumours; however, it fails when the oxygen concentration at the place of irradiation is too low. In this project I propose to synthesize new ruthenium-based photochemotherapeutic compounds containing cyclometallated ligand, and to test them in an in vitro model of hypoxic cancer. The presence of a carbon-metal bond is known to shift the light absorption properties of ruthenium polypyridyl complexes towards the photodynamic window, a wavelength range where light penetrates optimally into biological tissues. However, cyclometallation usually quenches the ligand photosubstitution properties of ruthenium compounds because it strongly modifies the energy of their excited states. In this project, I will introduce sterically hindering groups on the cyclometallated ligand to recover photoreactivity of the complexes while keeping light absorption at high wavelengths. The challenges of this project consist on the one hand in achieving efficient ligand photosubstitution reactions with cyclometallated ruthenium compounds, and on the other hand in minimizing the cytotoxicity in the dark while maximizing cytotoxicity after red light irradiation at low oxygen concentrations. The ruthenium prodrugs will be synthesized, their photochemical properties will be measured, and their cytotoxicity against human cancer cell lines will be determined in an in vitro model of hypoxic cancer. This project will set new grounds in the treatment of hypoxic tumours and propose a new way to overcome side effects occurring in traditional anticancer chemotherapy.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CYLCORU4PACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CYLCORU4PACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Migration Ethics (2019)

Migration Ethics

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

Cata-rotors (2019)

Visualising age- and cataract-related changed within cell membranes of human eye lens using molecular rotors

Read More