Explore the words cloud of the ATOMICAR project. It provides you a very rough idea of what is the project "ATOMICAR" about.
The following table provides information about the project.
Coordinator |
DANMARKS TEKNISKE UNIVERSITET
Organization address contact info |
Coordinator Country | Denmark [DK] |
Total cost | 1˙496˙000 € |
EC max contribution | 1˙496˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2017-STG |
Funding Scheme | ERC-STG |
Starting year | 2018 |
Duration (year-month-day) | from 2018-02-01 to 2023-01-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | DANMARKS TEKNISKE UNIVERSITET | DK (KGS LYNGBY) | coordinator | 1˙496˙000.00 |
The goal of ATOMICAR is to achieve the ultimate sensitivity limit in heterogeneous catalysis: Quantitative measurement of chemical turnover on a single catalytic nanoparticle.
Most heterogeneous catalysis occurs on metal nanoparticle in the size range of 3 nm - 10 nm. Model studies have established that there is often a strong coupling between nanoparticle size & shape - and catalytic activity. The strong structure-activity coupling renders it probable that “super-active” nanoparticles exist. However, since there is no way to measure catalytic activity of less than ca 1 million nanoparticles at a time, any super-activity will always be hidden by “ensemble smearing” since one million nanoparticles of exactly identical size and shape cannot be made. The state-of-the-art in catalysis benchmarking is microfabricated flow reactors with mass-spectrometric detection, but the sensitivity of this approach cannot be incrementally improved by six orders of magnitude. This calls for a new measurement paradigm where the activity of a single nanoparticle can be benchmarked – the ultimate limit for catalytic measurement.
A tiny batch reactor is the solution, but there are three key problems: How to seal it; how to track catalytic turnover inside it; and how to see the nanoparticle inside it? Graphene solves all three problems: A microfabricated cavity with a thin SixNy bottom window, a single catalytic nanoparticle inside, and a graphene seal forms a gas tight batch reactor since graphene has zero gas permeability. Catalysis is then tracked as an internal pressure change via the stress & deflection of the graphene seal. Crucially, the electron-transparency of graphene and SixNy enables subsequent transmission electron microscope access with atomic resolution so that active nanoparticles can be studied in full detail.
ATOMICAR will re-define the experimental limits of catalyst benchmarking and lift the field of basic catalysis research into the single-nanoparticle age.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ATOMICAR" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "ATOMICAR" are provided by the European Opendata Portal: CORDIS opendata.
Just because we can, should we? An anthropological perspective on the initiation of technology dependence to sustain a child’s life
Read MoreA need for speed: mechanisms to coordinate protein synthesis and folding in metazoans
Read MoreUnderstanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell
Read More