Explore the words cloud of the MMSA project. It provides you a very rough idea of what is the project "MMSA" about.
The following table provides information about the project.
Coordinator |
RIJKSUNIVERSITEIT GRONINGEN
Organization address contact info |
Coordinator Country | Netherlands [NL] |
Total cost | 165˙598 € |
EC max contribution | 165˙598 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2017 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2018 |
Duration (year-month-day) | from 2018-04-01 to 2020-03-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | RIJKSUNIVERSITEIT GRONINGEN | NL (GRONINGEN) | coordinator | 165˙598.00 |
Over the last few decades the field of artificial molecular motors/switches has evolved into a cornerstone of chemical research. Molecular motors are now widely expected to play a leading role in the nanotechnological revolution of the 21st century as they are central to the transition from static to responsive/adaptive materials and molecular devices. Feringa's unidirectional rotary motors are unique in their potential to perform continuous work and are recognized as having a multitude of possible applications. However, necessary use of UV light as well as poorly understood behavior of surface bound rotary motors has so far hampered their development. The research outlined in this proposal is aimed at overcoming these limitations by exploring two-photon absorption pathways as well as upconverting nanoparticles to drive molecular rotation with near-infrared light. Secondly, scanning tunneling microscopy will be used to gain insight into the rotational behavior of surface bound rotary motors on the basis of individual molecules as well as their organisation into self-assembled monolayers. This knowledge will subsequently be applied to showcase three distinct, exemplary applications: Firstly, individually addressing the states making up the rotational cycle of motors incorporated into self-assembled monolayers will be studied for its potential use in molecular information storage. Secondly, the coordinated rotation of surface bound motors will be harnessed in order to achieve transport of microscale objects. Lastly, the influence of the dynamic behavior of a motor functionalized surface on stem cell adhesion will be explored. MMSA is therefore an interdisciplinary project at the interface of chemistry, surface science, nanorobotics and cell biology, placing it at the forefront of science.
year | authors and title | journal | last update |
---|---|---|---|
2019 |
Lukas Pfeifer, Maximilian Scherübl, Maximilian Fellert, Wojciech Danowski, Jinling Cheng, Jasper Pol, Ben L. Feringa Photoefficient 2 nd generation molecular motors responsive to visible light published pages: 8768-8773, ISSN: 2041-6520, DOI: 10.1039/c9sc02150g |
Chemical Science 10/38 | 2020-03-23 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MMSA" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "MMSA" are provided by the European Opendata Portal: CORDIS opendata.