Opendata, web and dolomites

NeuroMag SIGNED

Magnonic Matrix-Vector-Multiplier for Neural Network Applications

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NeuroMag project word cloud

Explore the words cloud of the NeuroMag project. It provides you a very rough idea of what is the project "NeuroMag" about.

breaking    demonstrator    profile    rapid    iron    multiplier    efficiency    electro    operated    boost    skills    magnons    generate    nanofabrication    machine    bidirectionality    engineer    yttrium    researched    wave    scalable    proof    full    combination    combines    index    soft    training    operation    vector    neuromag    adjustable    networks    progress    magnetoelectric    artificial    critical    scientific    waves    career    technological    linear    compound    velocity    engineering    spin    magnetic    ground    interference    nanofabricate    combined    researcher    device    hardware    photonics    effect    plan    refractive    alternative    energy    broadband    tuning    science    media    local    implementations    excite    magnonic    advantages    power    garnet    matrix    materials    optic    of    damping    microwave    learning    transformations    optical    equivalent    performing    interdisciplinary    manipulate    modulation    undergone    photonic    detect    intensively    paving    neural    physics    transducers   

Project "NeuroMag" data sheet

The following table provides information about the project.

Coordinator
INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM 

Organization address
address: KAPELDREEF 75
city: LEUVEN
postcode: 3001
website: www.imec.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 172˙800 €
 EC max contribution 172˙800 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-05-22   to  2020-05-21

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM BE (LEUVEN) coordinator 172˙800.00

Map

 Project objective

Machine learning applications based on artificial neural networks have undergone rapid progress in recent years. To improve the power efficiency over current hardware, alternative implementations of a critical part of artificial neural networks, the matrix-vector multiplier performing large-scale linear transformations, have been intensively researched. Recently, a matrix-vector multiplier based on the interference of optical waves has been proposed in combination with local adjustable electro-optic modulation of the refractive index to enable training. NeuroMag’s objective is to implement such an interference-based matrix-vector multiplier using spin waves (magnons). Magnetoelectric compound materials will be used to engineer scalable broadband transducers with high potential energy efficiency to generate, detect, and manipulate spin waves. Distinct advantages of such a spin wave implementation over a photonic one are (i) the full bidirectionality of the system since transducers can be operated both to excite as well as detect spin waves and (ii) the large tuning range of the phase velocity of spin waves (equivalent to the refractive index in photonics) by the magnetoelectric effect. Magnetoelectric transducers and low-damping Yttrium Iron Garnet magnetic media will be combined to nanofabricate a demonstrator device and study its matrix-vector multiplier operation. Using an interdisciplinary approach that combines materials science, physics, microwave engineering, and device nanofabrication, NeuroMag thus targets the ground-breaking proof-of-concept of a magnonic matrix-vector multiplier and its operation, paving the way towards magnonic artificial neural networks. The combination of learning through research and a comprehensive training plan, including both scientific and technological as well as soft skills, will strongly enhance the researcher profile of the applicant and provide a boost for his future scientific career.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEUROMAG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NEUROMAG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More  

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More  

ARMOUR (2020)

smARt Monitoring Of distribUtion netwoRks for robust power quality

Read More