Opendata, web and dolomites

UPDWMI SIGNED

Ultra-low Power Digital circuits for Wireless Medical Implants

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 UPDWMI project word cloud

Explore the words cloud of the UPDWMI project. It provides you a very rough idea of what is the project "UPDWMI" about.

she    transmission    cancer    located    ultra    clinicians    interdisciplinary    electronics    tradeoff    teaching    extensive    physiological    experiences    sensors    physicist    implant    cells    multidisciplinary    cmos    fits    communication    rice    components    analog    size    multiple    toxicity    circuit    interfacing    right    miniature    nanotechnology    area    efficient    device    organs    full    mentoring    biochemist    team    performance    specifications    ic    interact    nodes    host    ics    compression    electronic    acceptance    digital    chip    sensitive    implants    tumors    silicon    researcher    deriving    human    made    power    limitations    determines    benefit    data    primary    circuits    ideally    electrical    group    hence    organization    interfaces    nervous    body    characterization    wireless    knowhow    ongoing    source    training    designers    memory    technologies    consumption    arithmetic    bio    medical    bandwidth    mixed    advances    grain    receive    complement    healthcare    designing    optimize    monitor    small    custom    sensor    signal   

Project "UPDWMI" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF EDINBURGH 

Organization address
address: OLD COLLEGE, SOUTH BRIDGE
city: EDINBURGH
postcode: EH8 9YL
website: www.ed.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-06-15   to  2020-09-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF EDINBURGH UK (EDINBURGH) coordinator 195˙454.00

Map

 Project objective

Advances in nanotechnology have made it possible to implant ultra-small electronic sensors in the human body. Interfacing with organs and nervous system, these devices will be a key part of future healthcare technologies. One of the most important components in such a device is the electronic integrated circuit (IC) located right at the signal source. This determines the overall power consumption and size of an implant. However, due to the need for sensitive analog circuits and toxicity concerns, very advanced silicon technology nodes (as in consumer electronics) cannot be used in such ICs. Hence, the power & area consumption is of significant concern. The primary aim of the project is to develop custom, novel ultra-low power digital cells for efficient signal processing and communication circuits for miniature wireless medical implants. This goal fits ideally with the ongoing IMPACT project (in the same group) that aims to develop rice-grain size bio-electronic sensor to monitor cancer tumors. This project will be able to use custom digital cells to optimize this tradeoff between data compression and transmission bandwidth in such a device. The researcher will interact with a multidisciplinary team working on the IMPACT project, including IC designers, physicist, biochemist and clinicians. The highly interdisciplinary work will consider the limitations of such an implant in terms of its sensor functionality and physiological acceptance before deriving the electrical specifications. The researcher will bring her extensive experience in designing low-power CMOS arithmetic and memory circuits to this project. This will complement the existing knowhow in bio-sensors and high-performance sensor interfaces already being developed at the host group. She will receive training in multiple aspects of mixed-signal IC design, full-chip characterization and bio-electronic systems. The host organization will also benefit from her teaching and mentoring experiences.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "UPDWMI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "UPDWMI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

COR1-TCELL (2019)

Analysis of the role for coronin 1-dependent cell density signalling in T-cell homeostasis

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More