Opendata, web and dolomites

PartonicNucleus SIGNED

Understanding the Quark and Gluon Structure of the Nucleus

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PartonicNucleus" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙405˙881 €
 EC max contribution 1˙405˙881 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2023-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 1˙405˙881.00

Map

 Project objective

The representation of the nucleus as an aggregate of protons and neutrons has been quite successful to describe nuclear properties in the past. However, it is now the time to understand the nuclear structure in terms of quarks and gluons (i.e. the partons). We have known for more than 30 years that the quark distribution deviates by up to 20% from the standard model of nuclear physics. With time, most explanations of this phenomenon have come to fail and this major nuclear effect remains today a mystery, but clearly tells us that a description of the nucleus in which protons and neutrons are not affected by their surrounding medium is incomplete. I propose here to use several recent developments in detection technologies and in hadron physics theory to perform new experiments that will unravel the deeper structure of the atomic nucleus. The first measurement will give the 3D tomography of the nucleus in terms of quarks and gluons. Second, I lay out a strategy to measure transverse momentum dependent parton distribution functions in cold nuclear matter and show how it can help understand the gluon saturation scale, i.e. the onset of non linear behavior in the nuclear gluon structure. Third, I propose to measure reactions, in which we detect nuclear remnants, to link the nucleon and quark dynamics of the nucleus together. The proposed measurements necessitate the development of a dedicated nuclear low energy recoil tracker (ALERT), that I propose to develop and build in the IPN Orsay laboratory at the Paris-Saclay University (France). This detector will be used at the recently upgraded electron accelerator of Jefferson Lab (USA). This facility offers a unique setup with the most intense multi-GeV electron beam in the world. Together, these three unique measurements form a comprehensive program to decisively advance our understanding of the nuclear structure in terms of quarks and gluons.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PARTONICNUCLEUS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PARTONICNUCLEUS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More  

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More