Opendata, web and dolomites

ProMeta SIGNED

Non-histone protein acetylation targets of KAT2A in AML

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ProMeta project word cloud

Explore the words cloud of the ProMeta project. It provides you a very rough idea of what is the project "ProMeta" about.

activated    histone    receptor    modifications    mds1    acute    pkc412    pathogenesis    pivotal    peroxisome    paves    essentially    transcriptional    flt3    free    post    food    itd    blasts    themes    chains    cancer    acetylation    received    translational    leukaemia    cell    rare    heterogeneous    mutation    investigation    protein    fusion    acetylates    regulates    administration    transferase    hat    ing    crucially    complexes    attributable    residues    care    proliferator    bone    survival    gamma    maintained    transplantation    proteins    developmental    found    considering    small    remained    catalyse    interests    disease    alpha    unchanged    hijacked    myeloid    acetyl    modifiers    mutated    deranged    diseases    biology    therapy    accompanying    designation    decades    first    acetyltransferase    clonal       function    driving    drug    marrow    prognosis    stages    implicated    expansion    aml    maturation    kat2a    epigenetic    yeast    dismal    aml1    supportive    oncogenic    explore    dysregulation    extends    reprogramming    fate    identity    coactivator    break    signalling    patients    mainstay    gcn5    evi1    30    fda   

Project "ProMeta" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-06-01   to  2020-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

The importance of an insight into how cell fate is established and maintained, extends far beyond the interests of developmental biology. It is pivotal to our understanding of how these processes can be hijacked and deranged in diseases such as cancer, or of the factors involved in reprogramming cell identity and function. Acute Myeloid Leukaemia (AML) has a dismal prognosis with less than 30% 5-year survival. Mainstay therapy has remained essentially unchanged for the past three decades, with all small advances in disease-free survival attributable to transplantation and improved supportive care. Only recently PKC412 has received Food and Drug Administration (FDA)’s break through therapy designation for the FLT3-ITD AML. This paves the way for investigation considering that FLT3-ITD as a driving oncogenic mutation has been found in ~30% of the AML patients. The pathogenesis of AML is heterogeneous, but there are common themes of epigenetic, transcriptional and signalling dysregulation that contribute to the resulting clonal expansion of blasts at different stages of maturation, and accompanying bone marrow failure. A significant number of the most commonly mutated targets in AML are histone modifiers, i.e. proteins or complexes that catalyse post-translational modifications in specific residues of the histone side chains. A less studied acetyltransferase, but crucially implicated in AML is KAT2A, the first histone acetyl-transferase (HAT) identified in yeast.GCN5 also acetylates the AML1/MDS1/EVI1 fusion protein in rare cases of AML.KAT2A regulates the activity of Peroxisome Proliferator- Activated Receptor Gamma-Coactivator-1α and B through protein acetylation. The goal of this proposal is to explore the role of KAT2A in Acute Myeloid Leukaemia (AML) through investigation of its non-histone protein acetylation activity.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROMETA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROMETA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LYSOKIN (2020)

Architecture and regulation of PI3KC2β lipid kinase complex for nutrient signaling at the lysosome

Read More  

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More