Opendata, web and dolomites

PathEVome SIGNED

Do Pathogen Extracellular Vesicles Deliver Crop Disease?

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PathEVome project word cloud

Explore the words cloud of the PathEVome project. It provides you a very rough idea of what is the project "PathEVome" about.

innovative    causing    corresponding    pathogen    translocated    crop    destination    wp2    workpackage    infection    tools    roles    transport    hotly    ground    host    biological    significantly    effector    biology    vesicles    transgenic    proteome    evs    dimensional    determined    devastating    disease    biogenesis    accumulate    global    breakthrough    question    pathogens    packaged    revealed    endocytosis    proteomics    cell    microscopy    fungi    filamentous    inside    formed    electron    final    wp    secretory    fusion    breaking    security    plant    genome    suppress    components    oomycetes    throughput    laboratory    implicating    broadly    delivered    pathology    editing    critical    interface    secreted    ev    scientific    vesicular    routes    diseases    brings    automated    cells    reside    extracellular    cytoplasmic    them    establishes    proteins    immunity    effectors    answered    resolve    living    arsenal    organisation    debated    discovery    food    wp3    pathevome    route    endocytic    traffic    molecular    virulence    vital    wp1    threaten   

Project "PathEVome" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF DUNDEE 

Organization address
address: Nethergate
city: DUNDEE
postcode: DD1 4HN
website: www.dundee.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙468˙260 €
 EC max contribution 2˙468˙260 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2023-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF DUNDEE UK (DUNDEE) coordinator 2˙130˙541.00
2    THE JAMES HUTTON INSTITUTE UK (DUNDEE) participant 337˙719.00

Map

 Project objective

Filamentous plant pathogens (fungi and oomycetes) cause the most devastating crop diseases and thus significantly threaten global food security. Essential components of their virulence arsenal are proteins called cytoplasmic effectors that are delivered inside plant cells to suppress immunity. One of the major scientific challenges in this field is understanding how effectors are secreted and translocated into host cells; a question that is hotly debated. An exciting breakthrough in my laboratory revealed that cytoplasmic effectors accumulate in extracellular vesicles (EVs), implicating this as a delivery route. This critical discovery establishes a vital need to address: • What proteins reside in EVs and how do EVs traffic them between pathogen and host cells? • How are EVs formed and how are effectors packaged into them? • What are the routes for uptake of cytoplasmic effectors into host cells and how do they reach their destination?

Each question will be answered by a corresponding workpackage (WP) that brings challenging, innovative approaches to the study of molecular plant pathology. In WP1 proteomics and transgenic approaches will allow the EV proteome to be determined and high-throughput automated electron microscopy will resolve the 3-dimensional organisation of the interface between plant and pathogen. In WP2, new molecular cell biological approaches and genome editing will facilitate an understanding of effector secretory routes and EV biogenesis. In WP3, fusion or endocytosis of EVs with plant cells will be studied and the endocytic routes to delivery of effectors to their final destination will be defined. PathEVome will develop a ground-breaking understanding of effector delivery from filamentous pathogens to the inside of living plant cells. It will provide tools and approaches beyond the current state-of-the-art in infection cell biology that can be broadly adopted to study the roles of vesicular transport in causing disease.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PATHEVOME" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PATHEVOME" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More