Opendata, web and dolomites

PathEVome SIGNED

Do Pathogen Extracellular Vesicles Deliver Crop Disease?

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PathEVome project word cloud

Explore the words cloud of the PathEVome project. It provides you a very rough idea of what is the project "PathEVome" about.

brings    traffic    endocytic    security    implicating    revealed    oomycetes    roles    suppress    final    hotly    ground    endocytosis    biogenesis    broadly    virulence    corresponding    breaking    pathogens    secretory    wp3    vital    destination    workpackage    translocated    extracellular    arsenal    ev    biological    components    disease    throughput    wp2    formed    wp    microscopy    reside    accumulate    delivered    significantly    establishes    routes    cells    genome    food    editing    route    crop    organisation    proteomics    answered    tools    evs    plant    biology    secreted    immunity    living    host    filamentous    molecular    scientific    transgenic    breakthrough    automated    them    interface    pathology    resolve    diseases    laboratory    critical    vesicular    fusion    infection    global    cell    pathogen    pathevome    debated    question    fungi    devastating    determined    threaten    transport    discovery    cytoplasmic    electron    vesicles    effector    wp1    inside    packaged    proteome    dimensional    causing    innovative    proteins    effectors   

Project "PathEVome" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF DUNDEE 

Organization address
address: Nethergate
city: DUNDEE
postcode: DD1 4HN
website: www.dundee.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙468˙260 €
 EC max contribution 2˙468˙260 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2023-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF DUNDEE UK (DUNDEE) coordinator 2˙130˙541.00
2    THE JAMES HUTTON INSTITUTE UK (DUNDEE) participant 337˙719.00

Map

 Project objective

Filamentous plant pathogens (fungi and oomycetes) cause the most devastating crop diseases and thus significantly threaten global food security. Essential components of their virulence arsenal are proteins called cytoplasmic effectors that are delivered inside plant cells to suppress immunity. One of the major scientific challenges in this field is understanding how effectors are secreted and translocated into host cells; a question that is hotly debated. An exciting breakthrough in my laboratory revealed that cytoplasmic effectors accumulate in extracellular vesicles (EVs), implicating this as a delivery route. This critical discovery establishes a vital need to address: • What proteins reside in EVs and how do EVs traffic them between pathogen and host cells? • How are EVs formed and how are effectors packaged into them? • What are the routes for uptake of cytoplasmic effectors into host cells and how do they reach their destination?

Each question will be answered by a corresponding workpackage (WP) that brings challenging, innovative approaches to the study of molecular plant pathology. In WP1 proteomics and transgenic approaches will allow the EV proteome to be determined and high-throughput automated electron microscopy will resolve the 3-dimensional organisation of the interface between plant and pathogen. In WP2, new molecular cell biological approaches and genome editing will facilitate an understanding of effector secretory routes and EV biogenesis. In WP3, fusion or endocytosis of EVs with plant cells will be studied and the endocytic routes to delivery of effectors to their final destination will be defined. PathEVome will develop a ground-breaking understanding of effector delivery from filamentous pathogens to the inside of living plant cells. It will provide tools and approaches beyond the current state-of-the-art in infection cell biology that can be broadly adopted to study the roles of vesicular transport in causing disease.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PATHEVOME" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PATHEVOME" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

KineTic (2020)

New Reagents for Quantifying the Routing and Kinetics of T-cell Activation

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

TechChange (2019)

Technological Change: New Sources, Consequences, and Impact Mitigation

Read More