Opendata, web and dolomites

Motorlisten

AI-based acoustic condition monitoring of industrial machinery

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Motorlisten project word cloud

Explore the words cloud of the Motorlisten project. It provides you a very rough idea of what is the project "Motorlisten" about.

signals    detect    3bn    larger    plants    emulates    customer    combining    faults    300    objects    invasive    industrial    maintainance    talk    wind    predict    asset    utilities    quantify    market    assets    acoustic    hour    minimize    physical    facility    algorithm    initial    turbines    picks    heat    left    gearboxes    unplanned    happen    sounds    grumble    accuracy    things    feasibility    learning    companies    smart    mechanic    lifetime    trl    expert    tell    consumption    optimize    machines    alike    ai    lower    pumps    unusual    commercial    onewatt    exactly    grumbles    scalable    global    sensor    big    hearing    fault    maintenance    manufacturers    water    machine    strategy    longer    markets    ears    internet    infinitely    warning    motor    noises    human    predictive    mechanical    downtime    industry    attractive    break    machinery    emit    uses    staff    99    data    unscheduled    untreated    auditory    industries    valves    energy    invented    worth   

Project "Motorlisten" data sheet

The following table provides information about the project.

Coordinator
ONEWATT SOLUTIONS BV 

Organization address
address: RIGAKADE 10
city: AMSTERDAM
postcode: 1013 BC
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website http://onewatt.eu
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2018
 Duration (year-month-day) from 2018-08-01   to  2019-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ONEWATT SOLUTIONS BV NL (AMSTERDAM) coordinator 50˙000.00

Map

 Project objective

'Before the break, mechanical objects emit unusual noises - machines talk and grumble. These grumbles are warning signals that a fault is developing, which if left untreated can lead to motor failure and unscheduled downtime in the facility. At costs of up to €300,000 per hour, unplanned downtime is a very big problem for industrial plants and utilities alike. OneWatt has invented a non-invasive predictive maintenance system, combining an auditory sensor ('EARS'), which picks up a machine's grumbles, with an AI machine-learning algorithm. The system, developed to TRL 7, can detect and predict physical faults in machinery - and can tell maintenance staff not only that a fault is developing but exactly how, where and when the fault will happen. The system emulates an expert mechanic, who can identify faults just by hearing motor sounds, but because it uses AI and an infinitely larger data set than a human can experience, it is much more reliable than any human could be - and scalable. This will optimize maintainance work and minimize downtime, a big priority for industrial companies and utilities, who will be the initial customer targets. The potential market is global, worth an estimated € 3bn. OneWatt's system will help companies implement a much more targeted, cost-effective 'smart maintenance' strategy and become part of Industry 4.0 technology and the 'Industrial Internet of Things'. OneWatt's system will also be very attractive for other industries that have assets that emit acoustic signals, such as gearboxes or valves. Future target markets will include wind turbines, heat pumps and water distribution equipment. The objectives of the Phase 1 feasibility study are (i) to establish the parameters required to reach 99.99% accuracy; quantify targets and establish methodologies to achieve longer asset lifetime and lower energy consumption and (ii) to analyse the commercial potential of the technology among industrial manufacturers and utilities.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MOTORLISTEN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MOTORLISTEN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

Totem Spoon (2019)

Interactive Digital Signage with emotional intelligence for smart cities

Read More  

RDNA (2019)

Empowering New Venture Growth - RDNA

Read More  

MEDIVAC (2019)

Machine learning software to design personalized neoantigen vaccines tailored to specific vaccine delivery systems

Read More