Explore the words cloud of the RockDEaF project. It provides you a very rough idea of what is the project "RockDEaF" about.
The following table provides information about the project.
Coordinator |
UNIVERSITY COLLEGE LONDON
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 1˙499˙990 € |
EC max contribution | 1˙499˙990 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-STG |
Funding Scheme | ERC-STG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-01-01 to 2023-12-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITY COLLEGE LONDON | UK (LONDON) | coordinator | 1˙499˙990.00 |
The lithosphere is the thin outer shell of the Earth that supports the weight of mountains, plate tectonic forces, and stores the elastic energy that is released during earthquakes. The strength of the lithosphere directly controls the formation of tectonic plates and the generation and propagation of devastating earthquakes.
The strongest part of the lithosphere is where the deformation processes in rocks transition from brittle fracture to plastic flow. This transition controls the strength of tectonic plate interfaces, the coupling between mantle flow and surface tectonics, as well as the complex fault slip patterns recently highlighted by geophysical records (e.g., tremors and slow slip).
Despite its fundamental importance, the transitional behaviour remains very poorly understood. In this regime, we still do not know how rock deformation processes and properties evolve with depth and, critically, time. We also do not know exactly where the transition occurs in nature, if and how it may move over time, and what are the prevailing conditions there.
The aim of this project is to provide unprecedented quantitative constrains on the key material properties and processes associated with deformation and fluid flow at the brittle-plastic transition, and arrive at a clear understanding of the prevailing conditions and the dynamics of fault slip at the transition.
I propose to conduct laboratory rock deformation experiments at the high pressure and temperature conditions relevant to the transitional regime, and achieve unprecedented quantitative physical measurements by developing state-of-the-art in-situ instrumentation, taking advantage of the latest sensor technologies. I will focus on quantifying the effects of time and fluids, which are currently unexplored.
The ultimate outcome of the project is to detect the transition in nature by understanding its geophysical signature, and constrain the strength of faults and plate boundaries throughout the seismic cycle.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ROCKDEAF" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "ROCKDEAF" are provided by the European Opendata Portal: CORDIS opendata.